

B.Sc. Sem. V Teaching/Exam Scheme

w.e.f.: June '22

	w.e.i.: June							June 2					
Sr.	Course	Category	Course title	H	lours		Tot.	Cre	\mathbf{E}	\mathbf{M}	I	\mathbf{V}	Total
No.	code	of course		Per		Con.	dits					Marks	
1 10.	couc	or course			_			ares					TVICEI ISS
				W	eek		hrs.						
				L	T	P							
1	BC2301	Foundation	Teaching	2	_	_	2	2	70	30			100
		Compulsory	Language through										
		Compulsory	Literature- II										
			Enteracture II										
2	BC2302	Core Course	Chemistry-IX	4	_	_	4	4	70	30			100
3	BC2303	Core Course	Chemistry-X	4	_	_	4	4	70	30			100
			J										
4	BC2304	Core Course	Chemistry-XI	4	_	_	4	4	70	30			100
•	B0200.			•					, 0	50			100
5	BC2305	Core Course	Chemistry-XII	4	_	_	4	4	70	30			100
	202000			•					, 0				100
6	BC2306	Core Course	Chemistry		_	4	4	2			30	70	100
	20200		Practical – III			•					50	, 0	100
7	BC2307	Generic	Petrochemicals	2	_	_	2	2	70	30			100
,	DC2307		1 cu ochemicais	2					/0	30			100
		Elective											
8	BC2308	Compulsory	Summer	-	-	-	*	1	-	-	50	-	50
		Elective	Internship										
			Total	20	0	4	24	23	420	180	80	70	750
			10141	20		1 7		23	720	100	00	, ,	150

Generic Elective	1. Petrochemicals		
	2. Sustainable Chemistry		
Compulsory Elective	Summer Internship		

Note:* Summer Internship have 35 hours per semester

SRICT Institute of Science & Research

BACHELOR OF SCIENCE

Course Code: BC2301

Course Name: Teaching Language through Literature-II

Semester: V

Type of course: Foundation Compulsory

Prerequisite: Zeal to learn the subject.

Rationale: The rationale of the curriculum is to help students to express their original ideas in English and also develop interest in language and literature with a focus on comprehension, and reading, speaking and writing skills.

Teaching and Examination Scheme:

Teaching Scheme Credits					Total			
L	T	P	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
2	_	-	2	70	30	-	-	100

Sr.	CONTENT	Total			
No.		Hrs.			
SECTION-A					
1	Text: India – A Journey through Stories (Oxford University Press)	06			
	PROSE 1.The Magic Cure 2.Bachcha Lieutenants				
	3. 270 crore heartbeats 4.A Duel In Lucknow				
2	Formal Writing	04			
	(i) Applications for job,				
	(ii) Types of Resumes, Resume Writing				
3	Official Letters	03			
	N.B.: Official Letters lodging complaints with - the Police				
	Commissioner, the Municipal				
	Commissioner and the Post Master				
	SECTION-B				
4	Essay Writing (Composition)	04			
	List:				
	MODERN LIFE/ SOCIETY:(a) Stress Management (b) Unemployment				
	(c) Importance of Cleanliness (d) Terrorism: a Modern Curse				
	HERITAGE OF GUJARAT: (a) Gujarat University (b) Saputara (c)				
	Champaner (d) Umashankar Joshi				
	MISCELLANEOUS: (a) India's Struggle for Independence (b) UNO				
	(United Nations Organization) (c) Life of a soldier (d) My Plans after				
	Graduation				
5	Comprehension passage: Question Answers &other exercises	04			

SRICT Institute of Science & Research

6	Cloze Test: (Intermediate Level with Multiple Choices)	03	
	N.B.: The passage for Cloze Test should be of about 200 words aiming at		
	testing the students' intermediate level of proficiency. It will contain six		
	blanks each carrying one mark. Three options for each blank must be		
	given below the passage. This is based on Basic English Grammar		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	15	15	10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1. (Text) India A Journey through Stories (Oxford University Press)
- 2. David Green: Contemporary English Grammar Structure and Usage
- 3. M L Tickoo and Subramanian: Intermediate Grammar, Usage and Composition
- 4. Wren and Martin High School English Grammar and Composition

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Use English in day-to-day communication	20%
CO-2	Use various forms of vocabulary in varied situations in oral and written communication.	20%
CO-3	Comprehend the dynamics of various rules of grammar and check its validation while they speak and write language correctly	20%
CO-4	Use grammar effectively to make themselves competent Listener, Speaker, Reader and Writer by exposing to various set of situations	10%
CO-5	Write various formal and informal documents of day to day life	20%
CO-6	Prepare for lifelong learning and enjoyment of English Language and literature.	10%

- http://www.english-online.org.uk/
- http://www.learnenglish.de/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE

Course Code: BC2302

 $\textbf{Course Name: Chemistry-IX} \ (\textbf{INORGANIC CHEMISTRY})$

Semester V

Type of course: Core Course

Prerequisite: Should have basic knowledge about inorganic chemistry.

Rationale: At the end of the course, students will have knowledge about acid and base concepts, boranes, coordination compound bonding, and metal carbonyls.

Teaching and Examination Scheme:

Teaching Scheme Credits					Total			
L	T	P	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	0	4	70	30	-	-	100

Sr.	CONTENT	Total
No.		Hrs.
	SECTION-A	
1	CONCEPTS OF ACIDS AND BASES	08
	Concept of acids and bases - Arrhenius concept - Bronsted-Lowry	
	concept – The Lux-Flood concept - Lewis concept - Effect of solvents on	
	relative strengths of acids and bases -Effect of substituents on relative	
	strengths of acids and bases - Hard and soft acids and bases (HSAB) -	
	Pearson concept - HSAB principle and its applications.	
2	HYDRIDES OF BORANES	08
	Boron hydride and its classification, Wades Rule, preparation, properties,	
	structure and bonding in diborane, tetra borane (10), penta borane (9),	
	penta borane (11), hexaborane (10) and dodeca borane (12) anion.	
3	THERMODYNAMIC AND KINETIC ASPECTS OF METAL	08
	COMPLEXES	
	A brief out line of thermodynamic stability of metal complexes and	
	factors affecting stability of metal complexes. Lability and inertness.	
	Factors affecting lability of metal complexes. Labile and inert complexes	
	on the basis of reaction rate, VBT and CFT.	
	SECTION-B	
4	BONDING IN TRANSITION METAL COMPLEXES	08
	Jahn Teller Theorem, Distortation in octahedral complexes. Ligand Field	
	Theory. Molecular energy level diagram and magnetic properties for	
	$[\text{CoF}_6]^{3-}$, $[\text{Co}(\text{NH}_3)_6]^{3-}$, $[\text{FeF}_6]^{3-}$, $[\text{Fe}(\text{CN})_6]^{3-}$, π - bonding in octahedral	
	complexes.	

SRICT Institute of Science & Research

5	METAL CARBONYLS	08
	Definition, classification, nature of bonding in metal carbonyls, structure	
	and IR spectra in Ni(CO) ₄ ;Fe(CO) ₅ , Fe ₂ (CO) ₉ ,Mn ₂ (CO) ₁₀ , Cr(CO) ₆ ,	
	Co ₂ (CO) ₈ .	
6	CORROSION AND ITS PROTECTION	08
	Definition and importance of corrosion, Types of corrosion: uniform,	
	pitting, inter crystalline and stress cracking corrosion, electro-chemical	
	theory of corrosion. Protection methods: Coating, Inhibitors (Organic,	
	Inorganic, anodic, cathodic), anodic and cathodic protection.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	15	15	10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1) Principles of Inorganic Chemistry by Puri, Sharma and Kalia
- 2) Inorganic Chemistry- Principles of structure and reactivity by J.E. Huhhey and E.A. Keiter.
- 3) Theoretical Inorganic chemistry by Day & Selbin , Affiliated East West Publ. Pvt. Ltd
- 4) Advanced Inorganic Chemistry by Cotton and Wilkinson, John Wiley.

Uni. Chemistry by B. H. Mohan

- 5) Structural Inorganic chemistry by A. F. Wells.
- 6) Chemical Bonding an introduction By Rawal, Patel & Patel.
- 7) Environmental Chemistry by Amritha anand and Sugumar.
- 8) Basic Inorganic Chemistry by Cotton and Wilkinson
- 9) A Text book of Inorganic Chemistry by P.L.Soni
- 10) Introduction to Inorganic Chemistry by Durrant and Durrant
- 11) Modern Co-ordination Chemistry by R. Lewis and R.G. Wilkinson.
- 12) Quantum mechanics in chemistry by M. H. Hanna
- 13) Application of Group Theory to Chemistry by P.K.Bhattacharya., Himalaya PublishingHouse, Mumbai.
- 14) Quantum Rasayan, University Granth Nirman Board (Gujarat).
- 15) Environmental Chemistry by A.K. De.
- 16) The corrosion and oxidation of metals by Evans U.R. (1961), Arnold, London.
- 17) Corrosion, Causes and Prevention, Speller. F., Mc Grqw Hill, New york.
- 18) Dhatvik Ksharan, Part-I & II by M.N. Desai, Uni. Granth Nirman Board (Gujarat).
- 19) Corrosion and Corrosion Control, Uhlig H., Wiley.
- 20) Corrosion Engineering by Fontana M.G. and Green N.D., Mc Graw

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Explain concepts of acid and bases.	20%
CO-2	Relate various hydrides of boranes.	20%
CO-3	Discover stability of metal complexes.	20%
CO-4	Determine magnetic properties of various metal complexes.	10%
CO-5	Discuss structure and IR spectra of metal carbonyls.	20%
CO-6	Analyze corrosion and its protections.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE

Course Code: BC2303

Course Name: Chemistry-X (ORGANIC CHEMISTRY)

Semester V

Type of course: Core Course

Prerequisite: Should have basic knowledge about reaction mechanism and

spectroscopy.

Rationale: At the end of the course, students will have knowledge about organic reaction mechanism, aromaticity, and natural products.

Teaching and Examination Scheme:

	Teac	hing S	cheme	Credits	Examination Marks				Total
L T P			С	Theor	y Marks	Practical N	I arks	Marks	
					ESE (E)	PA (M)	ESE (V)	PA (I)	
	4	0	0	4	70	30	-	-	100

Sr. No.	CONTENT	Total Hrs.
110.	CECTION A	1115.
	SECTION-A	
1	REACTION MECHANISM	08
	(a) Different types of mechanism for Esterification and Hydrolysis:	
	$B_{AC}^{2}, A_{AC}^{2}, A_{AC}^{1}, A_{AL}^{1}$	
	(b) Mechanism of formation and hydrolysis of amides.	
	(c) Pyrolytic elimination: Cope and Chugaev reaction.	
	(d) Organic Name Reaction: Knoevenagel Reaction, Reformatsky	
	Reaction, Claisen Condensation Reaction.	
2	AROMATICITY	08
	Introduction to Aromaticity, Huckel's Rule, Aromatic Character of	
	Arenes, Definition & Examples of Aromatic, Non-Aromatic, Anti-	
	Aromatic Compounds (Benzenoids and Non-Benzenoids).	
3	INFRARED SPECTROSCOPY	08
	Introduction, Range of infrared, characteristics of IR absorption	
	frequencies: Origin of IR spectra, Fundamental Vibrations and	
	Overtones, Number of fundamental vibration, IR active and forbidden	
	vibrations, Coupled vibrations, Functional group region, and Finger print	
	region Functional group detection.	
	1051011. I unedoliui group ueteetioii.	

SRICT Institute of Science & Research

	SECTION-B	
4	(A) ALKALOIDS Alkaloids: Definition, Classification, occurrence and extraction, General	08
	properties. Isolation, Properties and structural elucidation of Nicotine.	
	(B) VITAMINS, STEROIDS AND HORMONES	
	Vitamins - classification, sources, functions and deficiencies of fat-	
	The B vitamin complex- Structural elucidation of Thiamin (B ₁)	
	Steroids-introduction and classification: Cholesterol, Ergosterol	
	Hormones -introduction and classification: Adrenalene.	
5	AMINO ACIDS AND PROTEINS	08
	Amino acids: Introduction of Amino acid, Isoelectric Point,	
	Nomenclature of Amino acids, Preparation, Physical and Chemical	
	Properties of Amino acids.	
	Proteins: Introduction, Structure, Classification, and Properties of	
	Proteins.	NO.
6	NMR SPECTROSCOPY Nuclear magnetic resonance, instrumentation, proton NMR, nuclear	08
	shielding and deshielding, chemical shift, spin-spin splitting,	
	interpretation of NMR spectra of simple organic molecules.	
	interpretation of 141411 spectra of simple organic molecules.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level U Level A Level N Level E Level C							
10	15	15	10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1) Organic Chemistry by Bahl and Bahl.
- 2) Reaction mechanism in organic chemistry by Mukhargy & Singh
- 3) Principles of reaction mechanism in organic chemistry by Dharmaraha & Chawla
- 4) Organic reaction mechanism by Bansal Tata Mac. Hill
- 5) Organic Chemistry (Vol I & II) 6 th Edn, I. L. Finar.
- 6) Organic Chemistry by Hendrickson, Cram & Hammond
- 7) Organic Chemistry by Brown R. F.
- 8) Organic Chemistry by Solomon W. Graham
- 9) Principles of Organic Synthesis- R. O. C. Norman
- 10) Basic Principles of Organic chemistry, by R. Y. Caserio, W. A. Benjamin
- 11) May's Chemistry of synthetic Drugs by Dyson.
- 12) Chemistry of drugs, Ener and Caldwell
- 13) Synthetic drugs by Tyagi and Yadav.

SRICT Institute of Science & Research

- 14) Synthetic Organic Chemistry by O. P. Agarwal
- 15) Organic Chemistry by Morrison and Boyd.
- 16) Chemistry of organic Natural Product Vol. I & II by O. P. Agarwal.
- 17) Chemistry of synthetic drugs by Trivedi
- 18) Principles of Medicinal Chemistry Vol. I & II by S. S. Kadam, K. R. Mahadik, K.
- G. Bothara (Nirali Prakashan)
- 19) Medicinal Chemsitry By Asuthosh kar 4/e
- 20) Organic reactions & their mechanism by P. S. Kalsi, New age international publishers
- 21) Organic Name Reactions by Gautam Brahmachari, Narosa Publishing House, New Delhi.
- 22) Organic Chemistry, 8th edition by Paula Yurkanis Bruice, University of California, Santa Barbara.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Identify and explain various reaction mechanism	20%
CO-2	Compare benzenoids and non benzenoids compounds	10%
CO-3	Interpret functional group region and fingerprint region.	20%
CO-4	Classify and elucidate natural products	20%
CO-5	Relate various amino acids and proteins.	10%
CO-6	Understand the basic concept of NMR spectroscopy.	20%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE Course Code: BC2304

Course Name: Chemistry-XI (PHYSICAL CHEMISTRY)

Semester V

Type of course: Core Course

Prerequisite: Should have basic knowledge about reactions and law involved in

physical chemistry.

Rationale: At the end of the course, students will have knowledge about

thermodynamics, basics of chemical equilibrium, and nuclear chemistry.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits	Examination Marks				Total
L T P			С	Theor	y Marks	Practical N	J arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	0	4	70	30	-	-	100

Sr.	CONTENT	Total				
No.		Hrs.				
	SECTION-A					
1	THERMODYNAMICS-III Partial molal free energy, (chemical potential), Derivation of Gibb's Duhem Equation- The Nernst Heat Theorem (NHT), limitations of NHT, Statement of The third law of Thermodynamics, Consequence of third	08				
	law of thermodynamics, Determination of absolute entropy of gases and liquids and solid, Applications of third law of thermodynamics-Numerical problems.					
2	PHASE EQUILIBRIA-I Statement and meaning of the terms phase, component, degree of freedom, phase rule, phase equilibria, of one component system-water, CO ₂ , Sulphur system.	08				
3	ELECROCHEMISTRY-III Concept of Oxidation and Reduction, Electrochemical series (Reduction series), definition of electrode, half-cell and cell, single electrode potential, sign of electrode potential, standard electrode potential (oxidation and reduction potential), Electrochemical process, Galvanic cell with example of Daniel cell, EMF of a cell and its measurements, Standard Weston cell, Different types of reversible electrodes, Determination of single electrode potential, Calculation of standard EMF of cell and Determination of cell reaction, Standard Hydrogen Electrode, Calomel electrode and Ag –AgCl electrode. Numerical problems.	08				

SRICT Institute of Science & Research

	SECTION-B	
4	CHEMICAL EQUILIBRIUM	08
	Chemical equilibrium, Law of mass action, Thermodynamic derivation of	l
	the law of chemical equilibrium, Vant Hoff isotherm, Relations between	l
	K_p , K_c and K_x , Temperature dependence of the equilibrium constant: The	l
	van't Hoff Equation. Le-Chatelier-Braun principle. Numerical problems.	l
5	NUCLEAR CHEMISTRY-I	08
	Stable and unstable isotopes, separation of isotopes by different methods,	l
	gaseous diffusion, thermal diffusion, distillation, chemical exchange	l
	methods, Bainbridge velocity focusing mass spectrograph, Dempster's	l
	direction focusing mass spectrograph.	l
6	NUCLEAR CHEMISTRY-II	08
	Particle accelerators : Linear accelerator, Cyclotron, Discovery of	l
	artificial disintegration, Classification of nuclear reaction based on	l
	overall energy transformations and - particles used as projectiles, Merits	l
	and demerits of different projectiles - Application of radio isotopes as	İ
	tracers in medicines, studying reaction mechanism in photosynthesis and	İ
İ	age determination by Carbon- Dating method. Numerical problems.	İ

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level U Level A Level N Level E Level C Le							
10 15 15 10 10 10							

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

REFERENCE BOOKS:

- 1. Essential of Physical chemistry by Bahl and Bahl
- 2. Principles of Physical Chemistry by Puri, Sharma and Pathania.
- 3. Elements of physical chemistry by Glasstone and Lewis
- 4. Physical chemistry by W. Moore
- 5. Physical chemistry by Atkins
- 6. Physical chemistry by G.K. Vemulapalli
- 7. Physical chemistry by B.K.Sharma
- 8. Physical chemistry by Gurdeep raj
- 9. Physical chemistry by Negi and Anand
- 10. Physical chemistry by K.L. KapoorVol 1-5.
- 11. Physical chemistry by Baliga, Dhavale and ZaveriVol 1-3.
- 12. Physical chemistry by Dr. S. Pahari
- 13. Nuclear chemistry by Arnikar
- 14. Electro chemistry by S. Glasstone
- 15. Electrochemistry by B.K.Sharma

- 16. Modern Electrochemistry by J'omBockris and Redd
- 17. Physical Chemistry by D.N. Bajpai.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Evaluate laws of thermodynamics	20%
CO-2	State phase equilibria	20%
CO-3	Examine different types of electrochemical cells and electrodes	20%
CO-4	Derive various laws of chemical equilibrium	10%
CO-5	Describe basic concepts of nuclear chemistry.	20%
CO-6	Classification and applications of nuclear chemistry.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE

Course Code: BC2305

Course Name: Chemistry-XII (ANALYTICAL CHEMISTRY)

Semester V

Type of course: Core Course

Prerequisite: Should have basic knowledge about analytical titrations.

Rationale: At the end of the course, students will have knowledge about good

laboratory practice, and titration techniques.

Teaching and Examination Scheme:

Ī	Teac	hing So	cheme	Credits		Examinati	on Marks	Total	
Ī	L	T	P	С	Theor	y Marks	Practical N	J arks	Marks
					ESE (E)	PA (M)	ESE (V)	PA (I)	
Ī	4	0	0	4	70	30	-	-	100

Sr.	Content	Total
No.		Hrs.
	SECTION-A	
1	INTRODUTION TO ANALYTICAL CHEMISTRY	08
	Chemical and Instrumental Analysis (advantages and disadvantages)	
	Overview of methods used in Quantitative analysis (classification of	
	classical and instrumental analysis),	
	Idea of significant figures-its importance. Accuracy- Method of	
	expressing accuracy error analysis- types of errors-minimizing errors.	
	Precision- methods of precision - mean, median, mean deviation,	
	standard deviation.	
2	GOOD LABORATORY PRACTICE	08
	Good lab practices, lab safety, waste disposal and managements, method	
	of storing chemicals, solvents and glassware-Handling of chemicals	
	[Carcinogenic chemical, Toxic and poisonous chemicals], List of	
	Hazardous chemicals-General procedure for avoiding accidents [Apron,	
	Safety goggles, Gloves pipetting process]-First aid technique [Burns, Eye	
	accident, Cuts, Poisons, Gas poisoning, electric shock].	
3	ACID BASE TITRATION	08
	Classification of electroanalytical methods, basic principle of pH metric	
	and conductometric titrations.	
	Different terms for titrant, titrand, analyte, end point and equivalence	
	point. Theory of acid base indicators. Indicator range. Selection of proper	
	indicators Calculation of pH at different stages of titrations of monobasic	
	and dibasic acid with strong base Construction of titration curve, Titration	
	of carbonate mixture and amino acids. Problems.	

SRICT Institute of Science & Research

	SECTION-B	
4	REDOX TITRATIONS Formal Potential, Redox reaction: FeSO ₄ -KMnO ₄ , Fe ⁺² -Ce+4, Principle of redox indicators, Structural chemistry of indicators (Diphenyl amine, Ferroin), Construction of titration curves for titration of Fe ²⁺ with Ce ⁴⁺ . Calculation of equilibrium constants for redox system, Types of indicators, Theory of true Redox indicators (Numerical). Oxidants - KMnO ₄ , K ₂ Cr ₂ O ₇ . Reductants - Sodium thiosulphate, Sodium arsenite.	08
5	COMPLEXOMETRIC TITRATIONS EDTA titration, Absolute and conditional stability constant, Distribution of various species of EDTA as function of pH. Absolute and conditional stability constants. Derivation of factors: α 4 for effect of pH, β4 for the effect of auxiliary complexing agent. Construction of Titration curves: Theory of metallochromic indicators, Masking, Demasking and kinetic masking. Types of EDTA titrations. Problems.	08
6	PRECIPITATION TITRATIONS Titrations involving silver salts, Detection of end points by Mohr's method, Volhard's method, Adsorption indicators. Construction of titration curves, Problems.	08

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks										
R Level	R Level U Level A Level N Level E Level C Level									
10	10 15		10	10	10					

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference books:

- 1) Quantitative Analysis by R. A. Day & A. L. Underwood, 6th ed. Pub. Prentice Hall of India ltd.
- 2) Vogel's Text Book Inorganic Quantitative Analysis, 6th ed.
- 3) Analytical Chemistry (Principles & Technique) by Lary G. Hargis
- 4) Fundamental of Analytical Chemistry by Skoog D. A. & West D. M.
- 5) Instrumental Methods of Analysis by B. K. Sharma
- 6) Instrumental analysis by R.D.Braun Mc Graw Hill
- 7) Analytical Chemistry by Gary Christian
- 8) Analytical Chemistry by Day and Underwood
- 9) Modern Analytical Chemistry by David Harvey, McGraw Hill Higher Education
- 10) College Analytical Chemistry, Mangaonkar, Teckchandani, Sathe, Ghalsasi, Jain, Himalaya Publishing House
- 11) Analytical Chemistry by Alka L. Gupta, PragatiPrakashan

12) Instrumental Methods of Chemical Analysis by H. Kaur, PragatiPrakashan.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Express and calculate errors.	20%
CO-2	Observe and apply good laboratory practice.	20%
CO-3	Relate and explain various titration methods.	20%
CO-4	Correlate several redox titrations.	10%
CO-5	Discuss theories of complexometric titrations.	20%
CO-6	Analyze the precipitation titration curves.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE Course Code: BC2307

Course Name: PETROCHEMICALS

Semester V

Type of course: Core Course

Prerequisite: Should have basic knowledge about petrochemicals.

Rationale: At the end of the course, students will have knowledge about different types of petrochemicals and application of petrochemical products.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits	Examination Marks						
L	T	P	С	Theor	y Marks	Practical N	Marks			
				ESE (E)	PA (M)	ESE (V)	PA (I)			
2	0	0	2	70	30	-	-	100		

Sr.	Content	Total							
No.		Hrs.							
	SECTION-A								
1	SOURCE OF PETROCHEMICALS	04							
	(a) Natural gas: Composition, Natural gas as Petrochemical feed stock.								
	(a) Crude oil: Composition, Distillation and Refining, Utilization of								
	various fractions (oil product).								
2	CLASSIFICATION OF PETROCHEMICALS	04							
	First, Second and Third generation petrochemicals.								
	Conversion process: Cracking reforming, Isomerisation, Hydrogenation,								
	Alkylation and Hydrodealkylation, Dehydrocyclisation of petroleum								
	products, Polymerization of gaseous hydrocarbons.								
3	EXTRACTION OF PETROCHEMICALS-I	04							
	Manufacture and industrial applications of Methane: Methanol, Synthesis								
	gas, Ammonia (C1 cut of petroleum).								
	Manufacture and industrial applications of Ethylene: Ethanol,								
	Acetaldehyde (Wacker-Chemie process), Ethylene Glycol (C2 cut of petroleum).								
	Manufacture and industrial applications of Acetylene: Acrylic acid,								
	Acrylonitrile, Vinylchloride (C2 cut of petroleum).								
	SECTION-B								
4	EXTRACTION OF PETROCHEMICALS-II	04							
	Manufacture and industrial applications of Propylene: Iso propyl alcohol,								
	Acetone (Wacker-Chemie process), Propylene oxide (Halcon process)								

SRICT Institute of Science & Research

	(C3 cut of petroleum).									
	Manufacture and industrial applications of Butadiene: Butylalcohols,									
	Methyl terbutyl ether (MTBE), Cyclopentadiene (C4 cut of petroleum).									
5	APPLICATION OF PETROCHEMICAL COMPOUNDS	04								
	A) Industrial Fuels: Natural fuels, Synthetic fuels, Hydrogen- Fuel of									
	tomorrow, Fuel for rocket (Hydrazine).									
	B) Intermediates of Pharmaceuticals and Dyes: Quinoline,									
	Sulphanilamide, H-acid, J-acid.									
6	BTX AROMATIC									
	Recovery process of BTX, manufacture and industrial applications of									
	benzene, toluene, xylene, naphthalene, phenol, styrene, aniline, maleic									
	anhydride, cyclohexanol.									

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level U Level A Level N Level E Level C Lev								
10	15	15	10	10	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1) Introduction to petrochemicals by Sukumar Maiti oxford and IBH pubs co. New Delhi.
- 2) A text on petrochemicals by Dr. B. K. Bhaskar Rao, Khanna pubs. New Delhi.
- 3) Chemicals from petroleum by A. L. Wadams (ELBS and John Murray London)
- 4) Petrochemicals by S. L. Venkatewarn (Colour pubs. Pvt. Ltd. Bombay)
- 5) Petrochemicals digest by MGK Manon (Asia Publishing house Bombay)

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Identify sources of petrochemicals.	20%
CO-2	Explain various conversion process.	20%
CO-3	Describe petrochemicals obtained from C1 and C2 cut of petroleum.	20%
CO-4	Describe petrochemicals obtained from C3, C4 and C5 cut of petroleum.	10%
CO-5	Understand the applications of petrochemical compounds.	20%
CO-6	Compare the properties & application of BTX aromatic compounds.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE

Course Code: BC2306

Course Name: Chemistry Practical - III Semester V

Type of course: Core Course

Prerequisite: Should have basic knowledge about lab utilities and its applications.

Rationale: At the end of the course, students will have knowledge about organic separations, gravimetric estimations and physical instruments.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits	Examination Marks					
L	T	P	C	Theor	y Marks	Practical Marks		Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)		
0	0	4	2	-	ı	70	30	100	

Content:

Sr.	Content	Total					
No.		Hrs.					
SECTION-A							
1	INORGANIC QUALITATIVE ANALYSIS-I	12					
2	VOLUMETRIC TITRATIONS	08					
3	ORGANIC ESTIMATIONS-I	04					
	SECTION-B						
4	INORGANIC QUALITATIVE ANALYSIS-I	12					
5	ORGANIC ESTIMATIONS-II	08					
6	PHYSICAL CHEMISTRY PRACTICALS	04					

Reference Books:

- **1.** A text book of practical organic chemistry A. I. Vogel
- **2.** Practical organic Chemistry Mann and Saunders
- **3.** Comprehensive Practical Organic Chemistry: Preparations and Quantitative Analysis V K Ahluwalia & R. Aggarwal Universities Press.
- 4. An Advance Course in practical Chemistry, A. K. Nad, B. Mahapatra and A. Ghoshal.
- **5.** Advanced Practical Inorganic Chemistry, Gurdeepraj, Goel Publishing House, 2001.
- **6.** An Advanced Course in Practical Chemistry, A.K. Nad, B. Mahapatra, A. Ghosal, New Central Book Agency, 2004.
- 7. Practical physical chemistry –J.B. Yadav
- **8.** Practicals in physical chemistry P.S.Sindhu
- **9.** Experimental physical chemistry R.C.Das, B.Behera
- **10.** Analytical Chemistry Practice, John H. Kennedy, Saunders College Publishing, Second Edition 1990.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Recognize the type of inorganic compound.	20%
CO-2	Solve volumetric titration.	20%
CO-3	Analyze the organic compound.	10%
CO-4	Identify the type of inorganic compound.	20%
CO-5	Analyze the organic compound.	20%
CO-6	Justify the physical properties.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

B.Sc. Sem. VI Teaching/Exam Scheme

w.e.f.: June '22

Sr. No.	Course code	Category of course	Course title	P	Hours Per week		Tot. Con. hrs.	Cre dits	E	M	I	V	Total Marks
				L	T	P							
1	BC2309	Foundation Compulsory	Basics of Communication Skills-II	2	-	-	2	2	70	30	-		100
2	BC2310	Core Course	Chemistry-XIII	4	-	-	4	4	70	30			100
3	BC2311	Core Course	Chemistry-XIV	4	-	-	4	4	70	30			100
4	BC2312	Core Course	Chemistry-XV	4	-	-	4	4	70	30			100
5	BC2313	Core Course	Chemistry-XVI	4	-	-	4	4	70	30			100
6	BC2314	Core Course	Chemistry Practical – IV	-	-	4	4	2			30	70	100
7	BC2315	Generic Elective	Sustainable Chemistry	2	-	-	2	2	70	30	1		100
8	BC2316	Compulsory Elective	Seminar	-	-	-	-	1	-	-	50		50
			Total	18	0	4	22	23	420	180	80	70	750

Generic Elective	3. Petrochemicals4. Sustainable Chemistry
Compulsory Elective	Seminar

BACHELOR OF SCIENCE

Course Code: BC2309

Course Name: Basics of Communication Skills-II

Semester: VI

Type of course: Foundation Compulsory

Prerequisite: Zeal to learn the subject.

Rationale: The rationale of the curriculum is to help students to express their original ideas in English and also develop interest in language and literature with a focus on comprehension, and reading, speaking and writing skills.

Teaching and Examination Scheme:

Teac	hing So	cheme	Credits		Examination Marks			
L	T	P	С	Theor	y Marks	Practical N	I arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
2	-	-	2	70	30	-	-	100

Sr. No.	CONTENT	Total Hrs.
	SECTION-A	
1	Text: Gems of Wisdom 1.The Model Millionaire 2.Too Dear 3.The Ant and The grasshopper 4.The Diamond Necklace	06
2	Report Writing (Press Reports) Suggested topics: Accidents, Natural Calamities and the Celebration of Festivals	04
3	Comprehension based on News Items N.B.: News items should be of about 225 words based on – sports events, events of local interest and international events. SECTION-B	03
4	Grammar: Reported Speech Turning the sentences into direct and indirect speech of narration	04
5	Grammar: Active &Passive Voice Usage	04
6	Writing: Paragraph &Email Writing	03

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
10	15	15	10	10	10	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1. Gems of Wisdom_ (Macmillan Education)
- 2. David Green: Contemporary English Grammar Structure and Usage
- 3. M L Tickoo and Subramanian: Intermediate Grammar, Usage and Composition
- 4. Wren and Martin High School English Grammar and Composition

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Use English in day-to-day communication	20%
CO-2	Use various forms of vocabulary in varied situations in oral and written communication.	20%
CO-3	Comprehend the dynamics of various rules of grammar and check its validation while they speak and write language correctly	20%
CO-4	Use grammar effectively to make themselves competent Listener, Speaker, Reader and Writer by exposing to various set of situations	10%
CO-5	Write various formal and informal documents of day to day life	20%
CO-6	Prepare for lifelong learning and enjoyment of English Language and literature.	10%

- http://www.english-online.org.uk/
- http://www.learnenglish.de/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE Course Code: BC2310

Course Name: Chemistry-XIII (INORGANIC CHEMISTRY)

Semester VI

Type of course: Core Course

Prerequisite: Should have basic knowledge about metal complex in inorganic

chemistry.

Rationale: At the end of the course, students will have knowledge about molecular symmetry, hybridization, reactions of coordination complexes, organometallic compounds, and bio-inorganic compounds.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits	Examination Marks				Total
L	T	P	С	Theor	y Marks	Practical N	J arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	0	4	70	30	_	-	100

Sr.	CONTENT	Total					
No.		Hrs.					
	SECTION-A						
1	MOLECULAR SYMMETRY	08					
	Introduction and importance of symmetry, Symmetry elements and						
	Symmetry operations, Classification of molecules in to point groups.						
	Point group of simple molecules like CO ₂ , HCl, H ₂ O, NH ₃ , BF ₃ , [PtCl ₄] ⁻² ,						
	PF ₅ , C ₆ H ₆ , C ₅ H ₅ ⁻ , CH ₄ , SF ₆ , Cis and Trans - Dichoroethylene (C ₂ H ₂ Cl ₂),						
	Staggered and Eclipsed Ethane (C ₂ H ₆).						
2	HYBRIDISATION AND SHAPES OF COVALENT MOLECULES	08					
	Hybridisation, Salient features of phenomenon of hybridisation. VSPER						
	Theory, geometry of covalent molecules, Geometry of molecules						
	containing only bond pairs of electrons – BF ₂ , BF ₃ , CH ₄ , PF ₅ , SF ₆ , and						
	IF ₇ molecules. Geometry of molecules containing bond pairs as well as						
	lone pair of electrons- NH ₃ , H ₂ O, SF ₄ , XeF ₂ , XeF ₄ .						
3	SUBSTITUTION REACTIONS OF OCTAHEDRAL COMPLEXES	08					
	Reaction mechanisms of ligand substitution in octahedral complexes (i)						
	S_N^{-1} (ii) S_N^{-2} , Acid hydrolysis & Base Hydrolysis-Redox (Single Electron						
	Transfer) reactions, Substitution reaction without breaking M-L bond.						
	SECTION-B						
4	ORGANOMETALLIC CHEMISTRY AND CATALYSTS	08					
	Organometallic compounds. Ligands in organometallic compounds. 18-						

SRICT Institute of Science & Research

	Electron rule-applications and limitations. Preparation, properties, Structure and bonding in ferrocene, and Zeise's salt. Hydrogenation of							
	olefins-Wilkinson's catalyst - Ziegler-Natta catalyst.							
5	INORGANIC POLYMERS Inorganic Polymers - general properties, important inorganic polymer. Phosphorous based polymers - Phosphorous based Chain and network polymers - preparation structures and uses. Polymers containing Boron - Preparation, reactions, uses and structure of borazine & Boron nitride.	08						
6	BIO - INORGANIC CHEMISTRY Metallo biomolecules — classification, Structure and functions of hemoglobin, myoglobin, Metalloenzymes: Carbonic anhydrase, Carboxy peptidase, and peroxidase. Role of alkali and alkaline earth metal ions in biological system. Biological fixation of nitrogen.	08						

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
10	15	15	10	10	10	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1) Introduction to quantum chemistry, by A. K. Chandra, Tata Mc. Graw Hill, Delhi.
- 2) Quantum mechanics in chemistry by M. H. Hanna
- 3) Theoretical Inorganic chemistry by Day & Selbin , Affiliated East West Publ. Pvt. Ltd.
- 4) Advanced Inorganic Chemistry by Cotton and Wilkinson, John Wiley. Uni. Chemistry by B. H. Mohan
- 5) Structural Inorganic chemistry by A. F. Wells.
- 6) Chemical Bonding an introduction By Rawal, Patel & Patel.
- 7) Environmental Chemistry by Amritha anand and Sugumar.
- 8) Basic Inorganic Chemistry by Cotton and Wilkinson
- 9) A Text book of Inorganic Chemistry by P.L.Soni
- 10) Introduction to Inorganic Chemistry by Durrant and Durrant
- 11) Modern Co-ordination Chemistry by R. Lewis and R.G. Wilkinson.
- 12) Inorganic Chemistry- Principles of structure and reactivity by J.E. Huhhey and E.A. Keiter.
- 13) Application of Group Theory to Chemistry by P.K.Bhattacharya., Himalaya PublishingHouse, Mumbai.
- 14) Quantum Rasayan, University Granth Nirman Board (Gujarat).
- 15) Environmental Chemistry by A.K. De.
- 16) The corrosion and oxidation of metals by Evans U.R. (1961), Arnold, London.
- 17) Corrosion, Causes and Prevention, Speller. F., Mc Grqw Hill, New york.

SRICT Institute of Science & Research

- 18) Dhatvik Ksharan, Part-I & II by M.N. Desai, Uni. Granth Nirman Board (Gujarat).
- 19) Corrosion and Corrosion Control, Uhlig H., Wiley.
- 20) Corrosion Engineering by Fontana M.G. and Green N.D., Mc Graw

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Understand the concept of molecular symmetry and calculate the point group.	20%
CO-2	Identify the shape of inorganic compounds using VSEPR Theory	20%
CO-3	Illustrate the concepts of substitution reaction in octahedral complexes.	20%
CO-4	Explain the applications of organometallic compounds.	10%
CO-5	Define the properties and importance of inorganic polymers	20%
CO-6	Describe the biological functions of inorganic metals.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE Course Code: BC2311

Course Name: Chemistry-XIV (ORGANIC CHEMISTRY)

Semester VI

Type of course: Core Course

Prerequisite: Should have basic knowledge about reactions and natural products.

Rationale: At the end of the course, students will have knowledge about molecular rearrangement, organic polymers, plant pigments, drugs and spectroscopy.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits		Examinati	on Marks		Total
L	T	P	С	Theor	y Marks	Practical N	J arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	0	4	70	30	-	-	100

Sr.	CONTENT	Total				
No.		Hrs.				
	SECTION-A					
1	MOLECULAR REARRANGEMENTS	08				
	Mechanism of rearrangements involving C to C migrations as illustrated	l				
	by Wagner-Meerwein and Pinocol-Pinacolone rearrangements.	l				
	Mechanism of rearrangements involving C to N migrations as illustrated	l				
	by Hoffmann, and Curtius, rearrangements.	l				
2	POLYMERS	08				
	1. Synthetic Polymer:-Basic concepts, Classification of Polymer.	l				
	Mechanism of Addition polymerization: free radical polymerization and					
	Ionic polymerization. Condensation Polymerization: Polyesters					
	(Terylene), Polyamides (Nylon-6,12). Thermoplastic and Thermosetting					
	Polymer, Natural and Synthetic Rubbers.					
	2. Biodegradable polymers- Introduction, classification and application,					
	Polylactic acid and polyglycolic acid.	l				
3	PLANT PIGMENTS:	08				
	Classification - General introduction of Carotenoids. Analytical and	l				
	synthetic evidence of β-carotene - General introduction of anthocynines	l				
	and anthocyanidines. Analytical and Synthetic evidences of cyanidine	1				
	chloride - Introduction of flavones and flavonols. General method of	İ				
	determining. Structure of flavones.	İ				
		l				

SRICT Institute of Science & Research

	SECTION-B	
4	TERPENES	08
	Terpenes: Introduction, Classification, Properties, Occurrence and	
	isolation of terpenes. Isoprene rule. Preparation, Properties, Uses,	
	Structural elucidation: Citral, Geraniol, Camphor.	
5	SYNTHETIC DRUGS	08
	Classification, based on pharmacological action, synthesis and uses of	
	Amylnitrate, Chloroquine, Pyrimethamine, Sulpha Pyrimidine,	
	Diazepam, Lidocaine, Chlorpropamide, Dapsone, Isoniazide, 5-Fluoro	
	Uracil.	
6	MASS SPECTROMETRY	08
	Mass spectroscopy: basic principles of mass spectrum - molecular peak -	
	base peak - isotopic peak - meta stable peak - types of fragmentation -	
	factors influencing the fragmentation - Mc-Lefferty rearrangement -	
	applications - Finger print application of mass spectra.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	R Level U Level A Level N Level E Level C Level							
10								

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1) Mechanism and Structure in organic chemistry-Goulde. S.
- 2) Reaction mechanism in organic chemistry by Mukhargy & Singh
- 3) Principles of reaction mechanism in organic chemistry by Dharmaraha & Chawla
- 4) Organic reaction mechanism by Bansal Tata Mac. Hill
- 5) Organic Chemistry (Vol I & II) 6 th Edn, I. L. Finar.
- 6) Organic Chemistry by Hendrickson, Cram & Hammond
- 7) Organic Chemistry by Brown R. F.
- 8) Organic Chemistry by Solomon W. Graham
- 9) Principles of Organic Synthesis- R. O. C. Norman
- 10) Basic Principles of Organic chemistry, by R. Y. Caserio, W. A. Benjamin
- 11) May's Chemistry of synthetic Drugs by Dyson.
- 12) Chemistry of drugs, Ener and Caldwell
- 13) Synthetic drugs by Tyagi and Yadav.
- 14) Synthetic Organic Chemistry by O. P. Agarwal
- 15) Organic Chemistry by Morrison and Boyd.
- 16) Chemistry of organic Natural Product Vol. I & II by O. P. Agarwal.
- 17) Chemistry of synthetic drugs by Trivedi

SRICT Institute of Science & Research

- 18) Principles of Medicinal Chemistry Vol. I & II by S. S. Kadam, K. R. Mahadik, K.
- G. Bothara (Nirali Prakashan)
- 20) Organic reactions & their mechanism by P. S. Kalsi, New age international publishers
- 22) Organic Chemistry, 8th edition by Paula Yurkanis Bruice, University of California, Santa Barbara.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Relate the concepts of various molecular rearrangement.	20%
CO-2	Classify the different synthetic and biodegradable polymers.	20%
CO-3	Explain the plant pigments and their structural elucidation.	20%
CO-4	Discuss the various properties and isolation of Terpenes.	10%
CO-5	Recognize the pharmacological actions and synthesis of	20%
	various synthetic drugs.	
CO-6	Understand the basic concept of MASS Spectrometry.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

BACHELOR OF SCIENCE

Course Code: BC2312

Course Name: Chemistry-XV (PHYSICAL CHEMISTRY)

Semester VI

Type of course: Core Course

Prerequisite: Should have basic knowledge about reactions and law involved in

physical chemistry.

Rationale: At the end of the course, students will have knowledge about characteristics of sol, nanomaterial, mass spectrometry and nuclear reactions.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits	Examination Marks				Total
L	T	P	С	Theory Marks Practical Marks			Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	0	4	70	30	_	-	100

Sr.	CONTENT	Total
No.		Hrs.
	SECTION-A	
1	COLLOIDS	08
	Introduction - Types of colloidal system – Lyophilic and Lyophobic sols	
	- Characteristics of Lyophilic and Lyophobic sols - Comparison of	
	Lyophilic and Lyophobic sols – Preparation of sols – Purification of sols	
	- Optical properties of sol - Kinetic properties of sol - Applications of	
	colloids. Micelle formation – Shape and structure of Micelle - Critical	
	micelle concentration (CMC).	
2	PHASE EQUILIBRIA-II	08
	Phase equilibria of two component system-simple eutectic, Pb Ag	
	systems, desilverisation of lead, KI- Water system, freezing mixtures.	
	Solid solutions: compounds with congruent and incongruent melting	
	point (Only definition and example), Three component solid-liquid	
	systems.	
3	NANOCHEMISTRY	08
	Definition - size dependent properties: magnetic, electrical and optical	
	properties - Synthesis of nanomaterials - bottom-up and top-down	
	approaches - thin film deposition - catalytic assisted growth - chemical	
	vapour deposition - sol gel method - chemical reduction Fullerenes -	
	carbon nanotubes - single walled and multi walled nano tubes -	
	Applications of nanoscience and nanotechnology.	

SRICT Institute of Science & Research

	SECTION-B	
4	BINARY LIQUID MIXTURES Liquid-liquid mixtures, ideal liquid mixtures, Raoult's law, non-ideal or real solutions, positive and negative deviations from Raoult's law, temperature composition curves for ideal and non-ideal binary solutions of miscible liquids, azeotropes, partially miscible liquids: Phenol-water systems, immiscible liquids, steam distillation, Chemical Potential of Ideal and non-ideal solutions.	08
5	SURFACE CHEMISTRY Adsorption - physisorption and chemisorptions - adsorption of gases by solids - adsorption isotherms - Freundlich adsorption isotherm - derivation of Langmuir adsorption isotherm, statement and explanation of BET isotherm - applications of adsorption - determination of surface area – adsorption indicators.	08
6	NUCLEAR REACTIONS: Nuclear reactions — Nuclear Fission and Fusion reaction — Nuclear equation — Energy released in Nuclear reaction - Mass defect — Nuclear Binding energy — Nuclear Fission process — Nuclear chain reaction — Atomic Bomb — Nuclear reactor - Hydrogen bomb. Numerical problems.	08

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	R Level U Level A Level N Level E Level C Level							
10	10 15 15 10 10 10							

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

REFERENCE BOOKS:

- 1) Essentials of Physical Chemistry by Bahl and Bahl.
- 2) Physical chemistry by G.M. Barrow.
- 3) Physical chemistry by W. Moore.
- 4) Physical chemistry by Atkins.
- 5) Physical chemistry by G.K. Vemulapalli.
- 6) Physical chemistry by B.K.Sharma.
- 7) Physical chemistry by Gurdeep raj.
- 8) Physical chemistry by Puri, Pathania, Sharma.
- 9) Physical Chemistry by D.N. Bajpai.
- 10) Physical chemistry by Negi and Anand.
- 11) Physical chemistry by K.L. KapoorVol 1-5.
- 12) Nanochemistry by G.B. Sergeev.
- 13) Physical chemistry by Dr. S. Pahari.
- 14) Nuclear chemistry by Arnikar.

SRICT Institute of Science & Research

- 15) Electro chemistry by S. Glasstone.
- 16) Electrochemistry by B.K.Sharma.
- 17) Modern Electrochemistry by J'omBockris and Redd.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	State properties and application of colloids.	20%
CO-2	Describe the components of Phase equilibria.	20%
CO-3	Illustrate the synthetic methods for nano materials.	20%
CO-4	Evaluate the law of binary liquid mixture.	10%
CO-5	Understand the theories of adsorption.	20%
CO-6	Discuss the various types of nuclear reactions and their	10%
	applications.	1070

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE Course Code: BC2313

Course Name: Chemistry-XVI (ANALYTICAL CHEMISTRY)

Semester VI

Type of course: Core Course

Prerequisite: Should have basic knowledge about spectroscopy and chromatography.

Rationale: At the end of the course, students will have knowledge about spectroscopy and chromatographic techniques.

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits	Examination Marks				Total
L	T	P	С	Theory Marks Practical Marks			Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	0	4	70	30	-	_	100

Sr.	Content	Total
No.		Hrs.
	SECTION-A	
1	GRAVIMETRIC ANALYSIS Factors offecting colubility of precipitates (1) Common ion (2) Diverse	08
	Factors affecting solubility of precipitates. (1) Common ion (2) Diverse ions (3) pH (4) Hydrolysis (5) Complex formation (With Numerical	
	problems). The precipitation process, Nucleation growth. Von Weimarn's	
	theory of relative super saturation. Digestion of precipitates Factor	
	affecting quality of precipitate: Coprecipitation and post precipitation Precipitation from homogeneous solution with illustration of Barium and	
	Aluminum.	
2	SPECTROSCOPY-I	08
	Types of spectrum, Process involved in interaction with matter	
	(Fluorescence, Phosphorescence), Components of Spectrophotometer-	
	Sources, Grating and Prism as dispersing device, Sample handling,	
	Detectors- Photo tube, Photomultiplier tube. Block diagram and working	
	of single beam and double beam spectrophotometer.	
3	SPECTROSCOPY-II	08
	Ultra-violet and Visible Spectroscopy: Basic principles of	
	instrumentation (choice of source, monochromator and detector) for	
	single and double beam instrument; Basic principles of quantitative	
	analysis. Application of UV in various fields.	
	Raman Spectroscopy: Introduction to Raman Spectroscopy and its applications.	

SRICT Institute of Science & Research

	SECTION-B	
4	THERMO GRAVIMETRIC ANALYSIS	08
	Principle, Instrumentation, Determination of purity and thermal stability	
	of primary and secondary standards, determination of correct drying	
	temperature, determination of curie point, automatic determination of	
	mixtures, analysis of alloys Characteristics of TGA curves- CaC ₂ O4.H ₂ O,	
	CaSO ₄ .5H ₂ O. Applications, Factors affecting TGA curves.	
5	LIQUID CHROMATOGRAPHY	08
	Introduction of TLC. Limitation of conventional liquid chromatography	
	(no detail method), technique of HPLC, elementary idea about technique	
	and layout diagrams of instrument, components of instrument of HPLC	
	technique.	
6	GAS CHROMATOGRAPHY	08
	Classification of chromatography, Principles of GC separation.	
	Components of GC, Sample introduction system, Columns: Packed	
	column Capillary Column (WCOT, SCOT), Carrier gas and its selection-	
	stationary phases: Solid adsorbents, Inert supports (Selection criteria,	
	Diatomaceous earths) and liquid stationary phases, Detectors: FID, TCD,	
	Qualitative and quantitative analysis using GC.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	R Level U Level A Level N Level E Level C Level							
10 15 15 10 10								

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference books:

- 1) Quantitative Analysis by R. A. Day & A. L. Underwood, 6 th ed. Pub. Prentice Hall of India ltd.
- 2) Vogel's Text Book Inorganic Quantitative Analysis, 6 th ed.
- 3) Analytical Chemistry (Principles & Technique) by Lary G. Hargis.
- 4) Fundamental of Analytical Chemistry by Skoog D. A. & West D. M.
- 5) Holler F.J.Instrumental Methods of Analysis by B. K. Sharma.
- 6) Instrumental analysis by R.D.Braun Mc Graw Hill.
- 7) Analytical Chemistry by Gary Christian Instrumental methods of chemical analysis Dr.H.Kaur. Pragati prakashan Meerut.
- 8) College Analytical Chemistry by Mangaonkar, Teckchandani, Sathe, Ghalsasi, Jain (Himalaya Publication House).

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Analyze the methods involved in gravimetric analysis.	20%
CO-2	Illustrate the principle components of spectrophotometer.	20%
CO-3	Understand the working principles of UV-Visible and Raman	20%
	spectroscopy.	2070
CO-4	Explain the instrumentation and applications of TGA	10%
CO-5	Describe the principles and components of liquid	20%
	chromatography.	2070
CO-6	Express the principles and components of gas	10%
	chromatography.	1070

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

BACHELOR OF SCIENCE

Course Code: BC2315

Course Name: SUSTAINABLE CHEMISTRY

Semester VI

Type of course: Core Course

Prerequisite: Should have basic knowledge about green chemistry.

Rationale: At the end of the course, students will have knowledge about importance of green chemistry, green catalyst, and different synthetic routes of green chemistry.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	T	P	С	Theory Marks		Practical N	J arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
2	0	0	2	70	30	-	-	100

Sr.	Content	Total			
No.		Hrs.			
SECTION-A					
1	INTRODUCTION TO SUSTAINABLE CHEMISTRY	04			
	Fundamental: Basic Concepts of Sustainable Chemistry; Sustainability				
	assessment; Essentials of sustainable chemistry; Role of chemistry in sustainability.				
2	GREEN CHEMISTRY FOR SUSTANABILITY	04			
	Introduction - Green chemistry - relevance and goals - Anastas' twelve				
	principles of green Chemistry - Planning of green chemistry: Atom				
	economy, alternative starting materials, solvents, reagents, catalysts,				
	energy source.				
3	GREEN SYNTHESIS USING BASIC PRINCIPLE OF GREEN	04			
	CHEMISTRY				
	Introduction – Synthesis of Adipic acid, Adiponitrile, Ibuprofen, Alcohol,				
	Aromatic Nitriles, Quinoxallines, Cyclohexane Oxime, Lauryllactam, 1-acetylnapthalene.				
	SECTION-B				
4	VALUE ADDITION TO WASTE BIOMASS	04			
	Renewable Feed stocks; Types of biomass derived fuels & energy,				
	biogas, bioethanol, biodiesel; Introduction to waste to energy				
	(Thermochemical conversion, gasification pathway, pyrolysis pathway);				
	Biochemical Conversion, fermentation.				

SRICT Institute of Science & Research

5	RENEWABLE ENERGY	04	
	Environmental consequences of fossil fuel use, Importance of renewable		Ì
	sources of energy, Sustainable Design and development, Types of RE		Ì
	sources, Limitations of RE sources-Power in the Wind – Types of Wind		Ì
	Power Plants (WPPs)–Components of WPPs-Working of WPPs –		ì
	Hydrogen as green fuel.		İ
6	RECYCLING AND CIRCULAR ECONOMY:	04	Ì
	Plastic recycling in circular economy. Sustainable packaging. Life Cycle		Ì
	Analysis (LCA), Cradle to grave and Cradle to Cradle design. Circular		ì
	economy. Introduction to carbon credit, carbon capture and		ì
	Environmental, Social and Governance (ESG).		Ì

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	R Level U Level A Level N Level E Level C Level							
10	15	15	10	10	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)
Reference books:

- 1. Green Chemistry Environmentally benign reactions V. K. Ahluwalia. Ane Books India (Publisher). (2006).
- 2. Introduction to Green Chemistry: Albert S. Matlack, 2nd edition, CRC Press.
- 3. Waste to Wealth-The circular economy advantage: Peter Lacy and Jakob Rutqvist, Ma Editions.
- 4. Green Solvents-Ionic Liquids: Paul T. Anastas (Series Editor), Peter Wasserscheid, Annegret Stark, Wiley-VCH.
- 5. Sustainable chemistry: G. Reniers and C.A Brebbia, WIT Press.
- 6. Valorization of biomass to value added commodities: Daramola, Michael, Ayeni, and Augustine (Eds), Springer.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Understand the basic concepts of sustainable chemistry.	20%
CO-2	Apply the concepts of green chemistry for sustainable	20%
	development.	
CO-3	Prepare the organic compounds using principles of green	20%
	chemistry.	2070
CO-4	Relate the various types of bio-fuels.	10%
CO-5	Explain different types of renewable energy.	20%
CO-6	Define the concepts of recycling and circular economy.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

BACHELOR OF SCIENCE

Course Code: BC2314

Course Name: Chemistry Practical - IV Semester VI

Type of course: Core Course

Prerequisite: Should have basic knowledge about lab utilities and its applications.

Rationale: At the end of the course, students will have knowledge about organic separations, gravimetric estimations and physical instruments.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	T	P	С	Theory Marks		Practical N	J arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
0	0	4	2	-	-	70	30	100

Content:

Sr.	Content	Total
No.		Hrs.
	SECTION-A	
1	ORGANIC SEPARATION-I	12
2	GRAVIMETRIC ESTIMATIONS	08
3	PHYSICAL EXERCISE-I	04
	SECTION-B	
4	ORGANIC SEPARATION-II	12
5	CHROMATOGRAPHY	08
6	PHYSICAL EXERCISE-II	04

Reference Books:

- **1.** A text book of practical organic chemistry A. I. Vogel.
- **2.** Practical organic Chemistry Mann and Saunders.
- 3. Comprehensive Practical Organic Chemistry: Preparations and Quantitative Analysis
- V K Ahluwalia & R. Aggarwal Universities Press.
- **4.** An Advance Course in practical Chemistry, A K. Nad, B. Mahapatra and A. Ghoshal.
- **5.** Advanced Practical Inorganic Chemistry, Gurdeepraj, Goel Publishing House, 2001.
- **6.** An Advanced Course in Practical Chemistry, A.K. Nad, B. Mahapatra, A. Ghosal, New Central Book Agency, 2004.
- 7. Practical physical chemistry –J.B. Yadav.
- **8.** Practicals in physical chemistry P.S.Sindhu.
- **9.** Experimental physical chemistry R.C.Das, B.Behera.

10. Analytical Chemistry Practice, John H. Kennedy, Saunders College Publishing, Second Edition 1990.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks %
		weightage
CO-1	Recognize the type of organic compound.	20%
CO-2	Calculate the amount of ions present in the inorganic mixture.	20%
CO-3	Identify and interpret the application of physical instrument.	20%
CO-4	Identify and inspect the type of organic compound.	10%
CO-5	Apply the knowledge of chromatography techniques.	20%
CO-6	Justify the physical properties.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/