



# Block Diagram reduction techniques

Subject name : Control System Engineering (2150909)  
Prepared By : Richa Dubey  
Assistant Professor, EE, SRICT

# Introduction

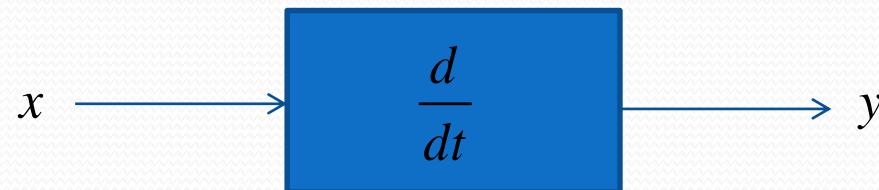
- Block diagram is a shorthand, graphical representation of a physical system, illustrating the functional relationships among its components.

OR

- A Block Diagram is a shorthand pictorial representation of the cause-and-effect relationship of a system.

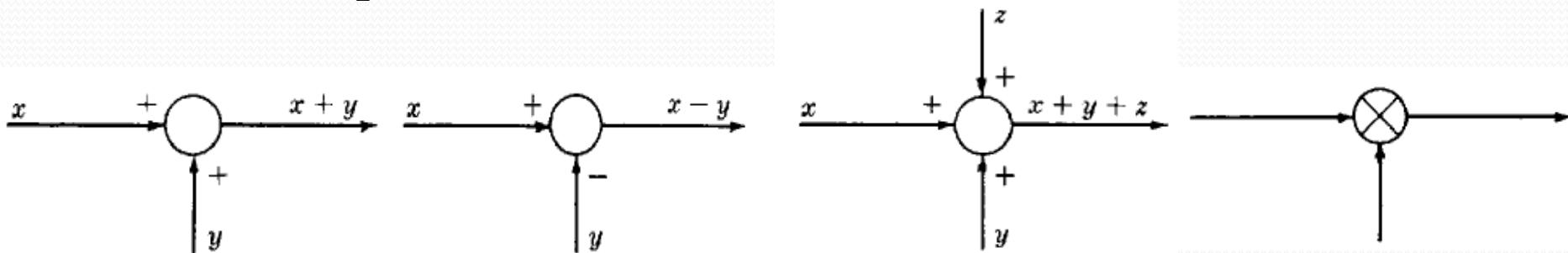
# Introduction

- The simplest form of the block diagram is the single ***block***, ***with one input and one output***.
- The interior of the rectangle representing the block usually contains a description of or the name of the element, or the symbol for the mathematical operation to be performed on the input to yield the output.
- The arrows represent the direction of information or signal flow.



# Introduction

- The operations of addition and subtraction have a special representation.
- The block becomes a small circle, called a summing point, with the appropriate plus or minus sign associated with the arrows entering the circle.
- Any number of inputs may enter a summing point.
- The output is the algebraic sum of the inputs.
- Some books put a cross in the circle.



$$R(s) \longrightarrow C(s)$$

Signals

(a)

$$R(s) \xrightarrow{\text{Input}} G(s) \xrightarrow{\text{Output}} C(s)$$

System

(b)

$$R_1(s) \xrightarrow{+} C(s) = R_1(s) + R_2(s) - R_3(s) \xrightarrow{-}$$

$$R_2(s)$$

$$R_3(s)$$

Summing junction

(c)

$$R(s) \xrightarrow{-}$$

$$R(s) \xrightarrow{-}$$

$$R(s) \xrightarrow{-}$$

Pickoff point

(d)

# CASCADE

- Any finite number of blocks in series may be algebraically combined by multiplication of transfer functions.
- That is, *n components or blocks with transfer functions  $G_1, G_2, \dots, G_n$ , connected in cascade* are equivalent to a single element  $G$  with a transfer function given by

$$G = G_1 \cdot G_2 \cdot G_3 \cdots G_n = \prod_{i=1}^n G_i$$

# Example



- Multiplication of transfer functions is *commutative*; that is,

$$G_i G_j = G_j G_i$$

for any  $i$  or  $j$ .

# Parallel Form:

- Parallel subsystems have a common input and an output formed by the algebraic sum of the outputs from all of the subsystems.

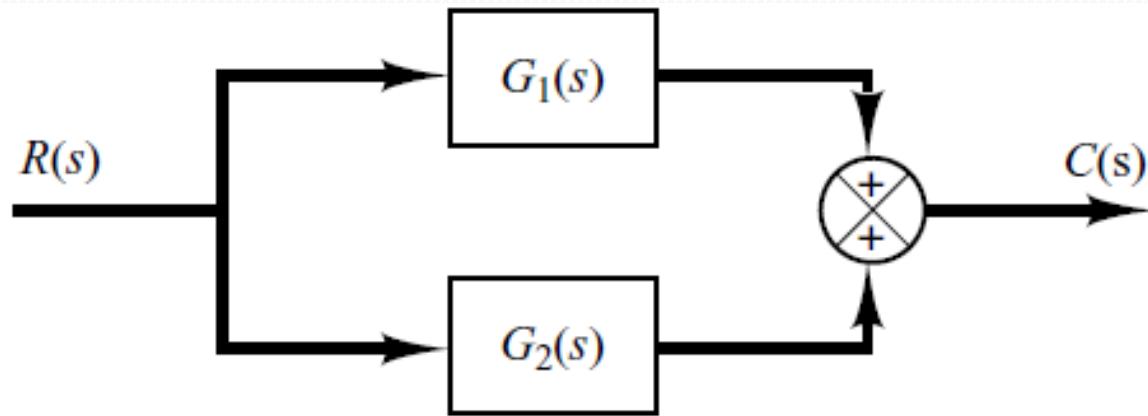


Figure: Parallel Subsystems.

# Parallel Form:

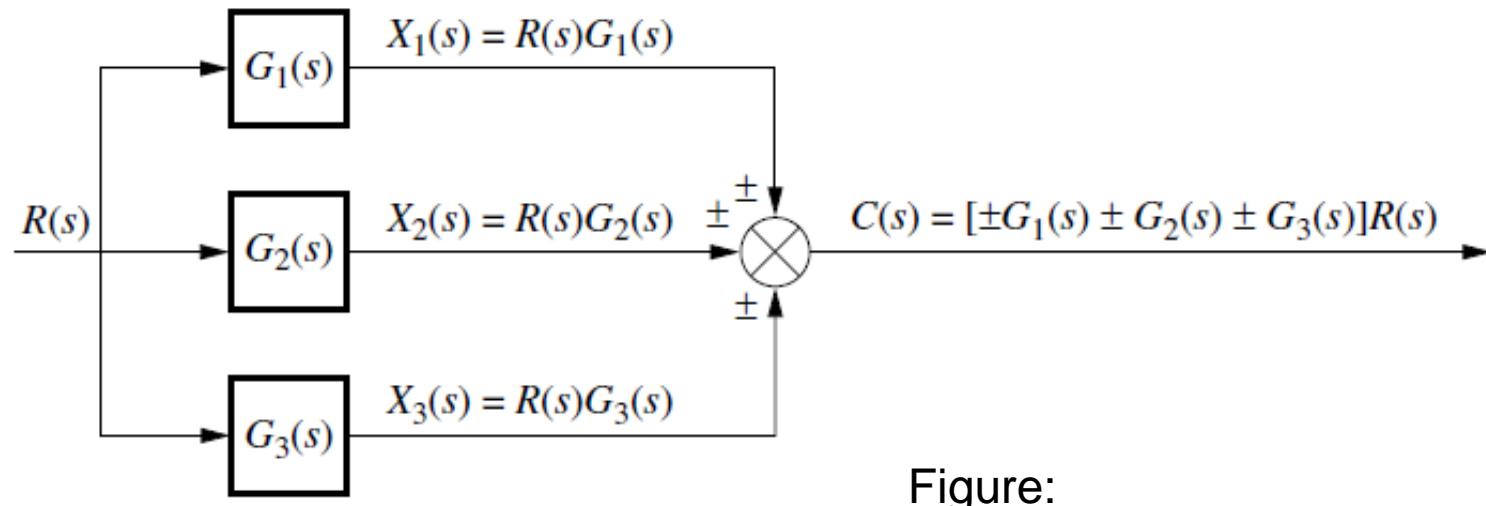


Figure:  
a) Parallel Subsystems.  
b) Equivalent Transfer Function.

The equivalent transfer function is

$$G_e(s) = \pm G_1(s) \pm G_2(s) \pm G_3(s)$$

# Feedback Form:

- The third topology is the feedback form. Let us derive the transfer function that represents the system from its input to its output. The typical feedback system, shown in figure:

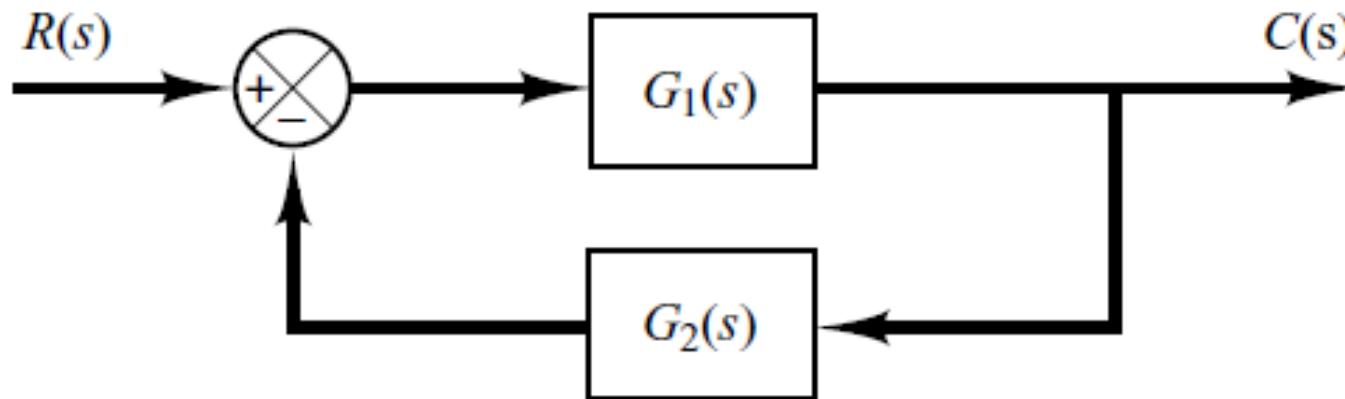
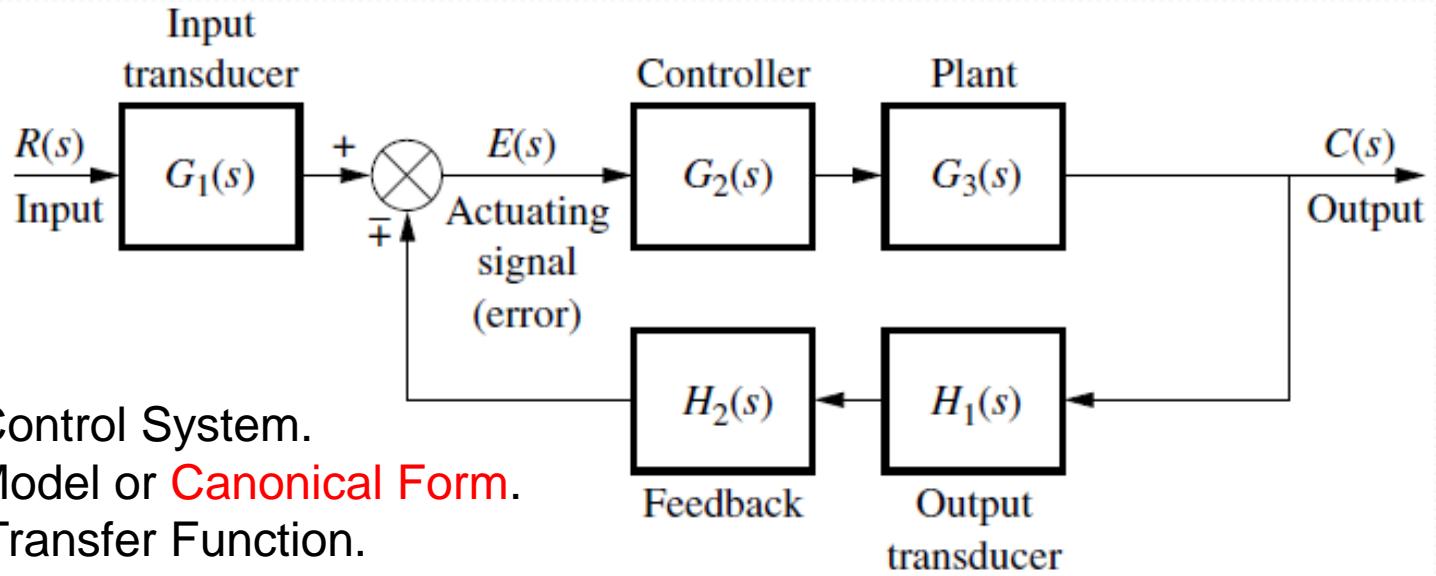
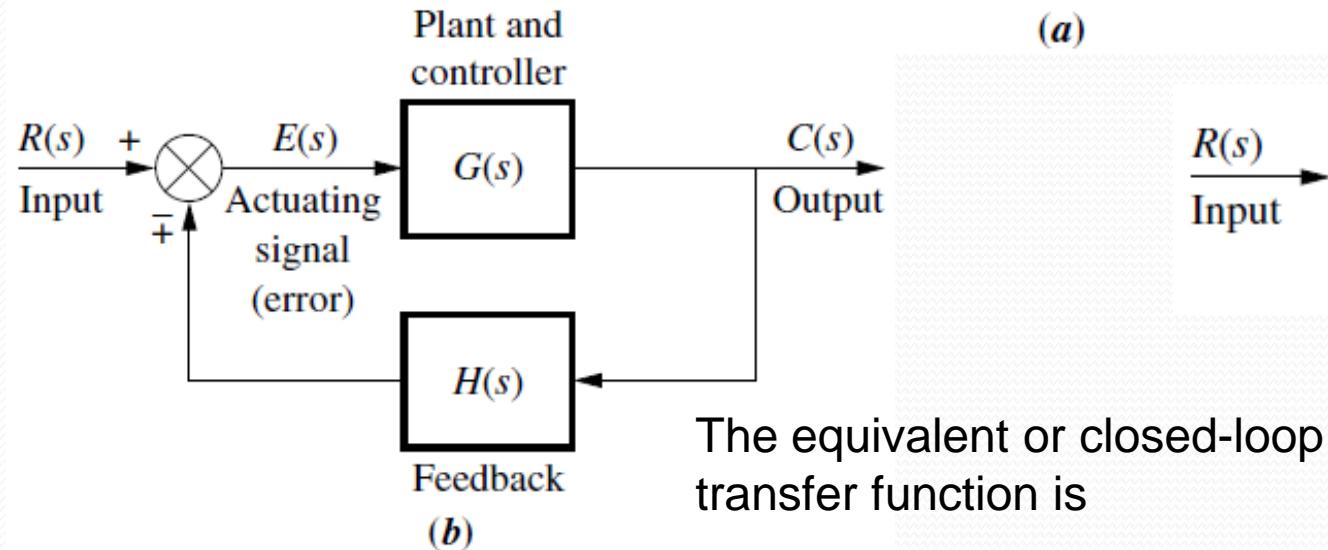


Figure: Feedback (Closed Loop) Control System.

**The system is said to have negative feedback if the sign at the summing junction is negative and positive feedback if the sign is positive.**

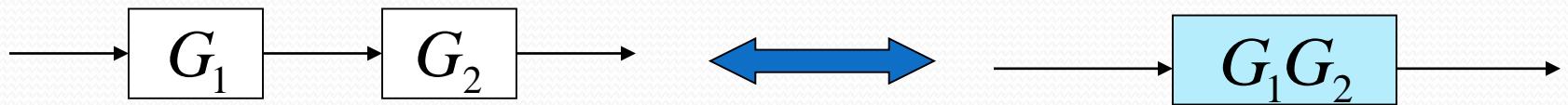
# Feedback Form:



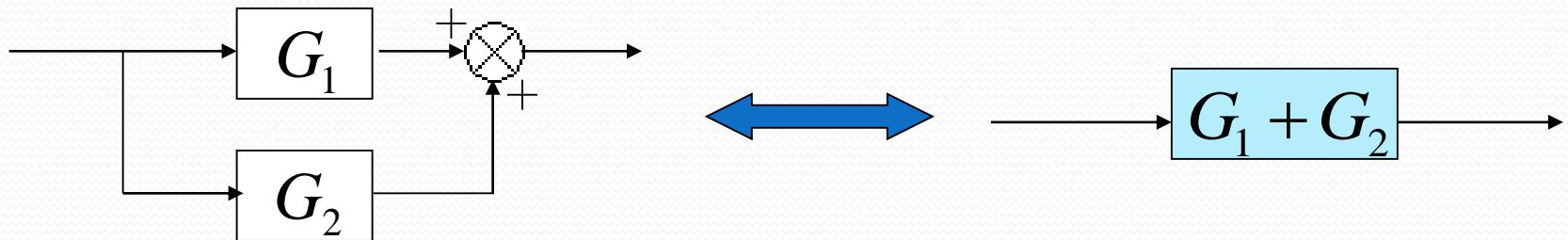
$$G_e(s) = \frac{G(s)}{1 \pm G(s)H(s)}$$

# Reduction techniques

## 1. Combining blocks in cascade

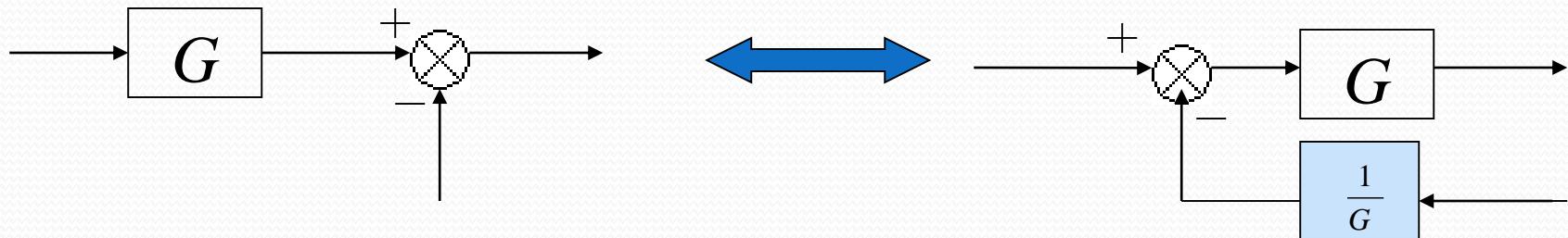


## 2. Combining blocks in parallel

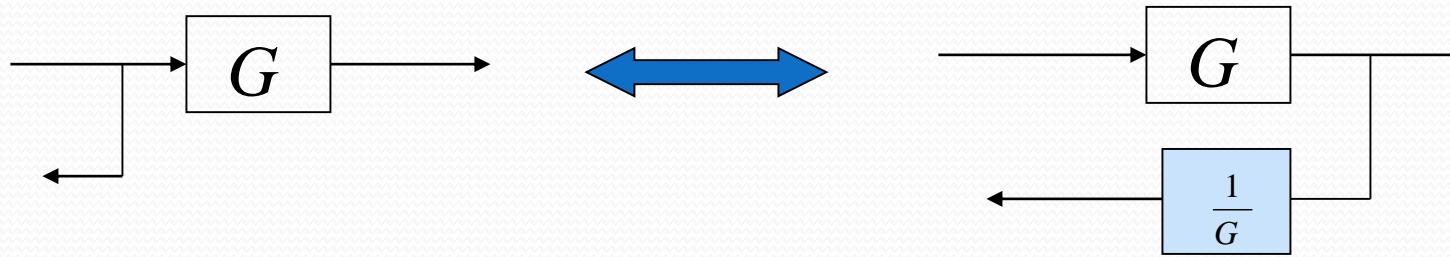


# Reduction techniques

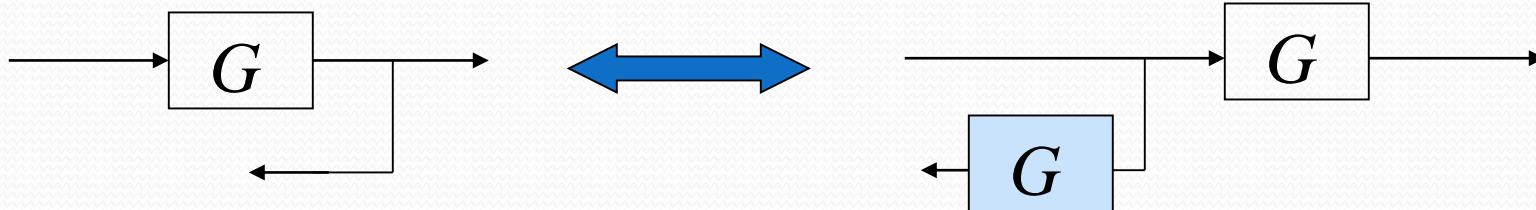
## 3. Moving a summing point ahead of a block



## 4. Moving a pickoff point behind a block

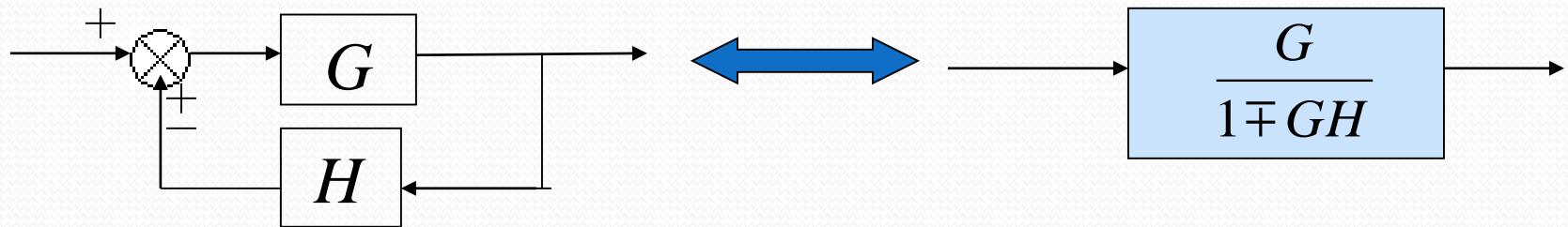
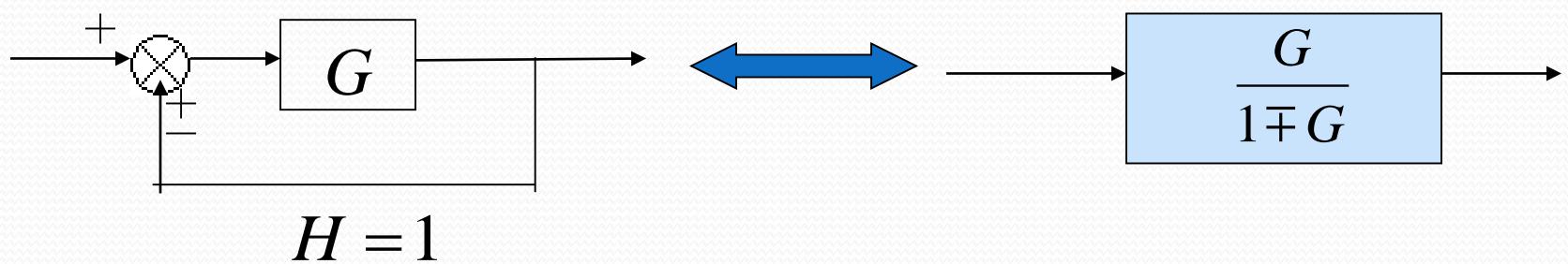


## 5. Moving a pickoff point ahead of a block

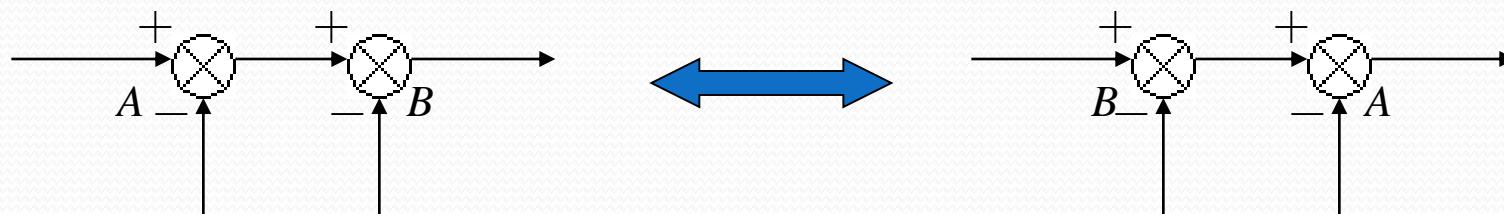


# Reduction techniques

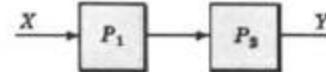
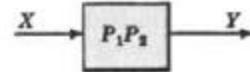
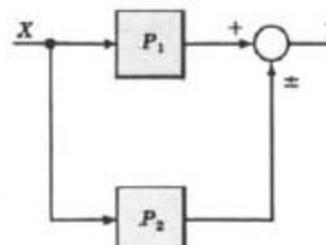
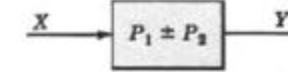
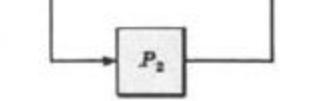
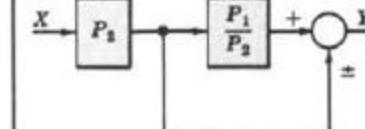
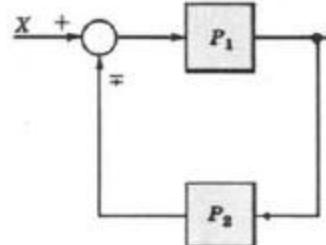
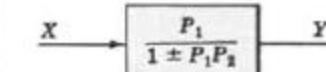
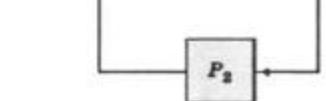
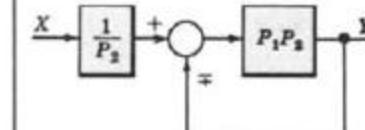
## 6. Eliminating a feedback loop



## 7. Swap with two neighboring summing points



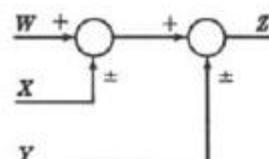
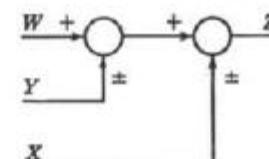
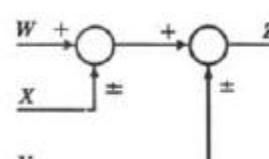
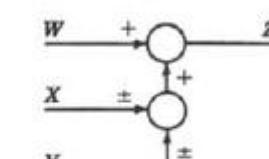
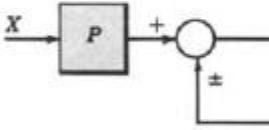
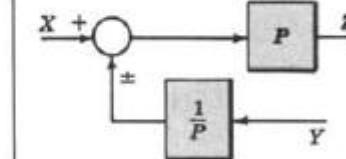
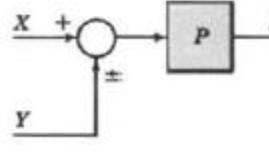
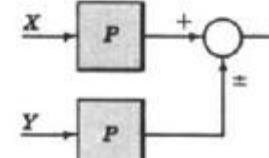
# Block Diagram Transformation Theorems

| Transformation |                                                             | Equation               | Block Diagram                                                                        | Equivalent Block Diagram                                                              |
|----------------|-------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1              | Combining Blocks in Cascade                                 | $Y = (P_1 P_2)X$       |    |    |
| 2              | Combining Blocks in Parallel; or Eliminating a Forward Loop | $Y = P_1 X \pm P_2 X$  |    |    |
| 3              | Removing a Block from a Forward Path                        | $Y = P_1 X \pm P_2 X$  |    |    |
| 4              | Eliminating a Feedback Loop                                 | $Y = P_1(X \mp P_2 Y)$ |   |    |
| 5              | Removing a Block from a Feedback Loop                       | $Y = P_1(X \mp P_2 Y)$ |  |  |

The letter **P** is used to represent any transfer function, and **W, X, Y, Z** denote any transformed signals.

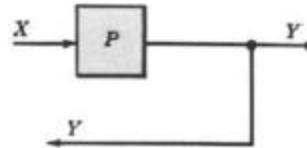
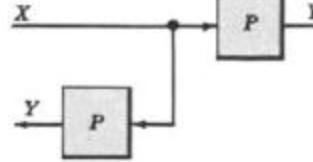
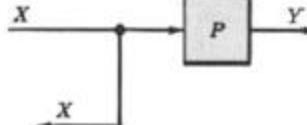
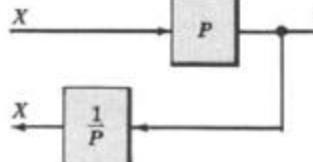
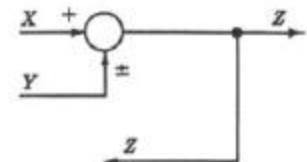
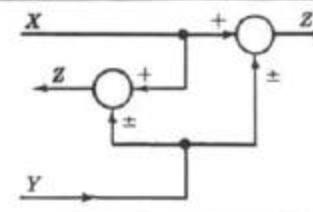
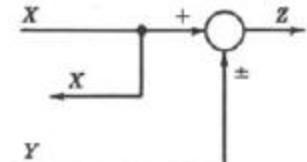
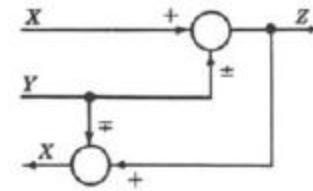
# Transformation Theorems

## Continue:

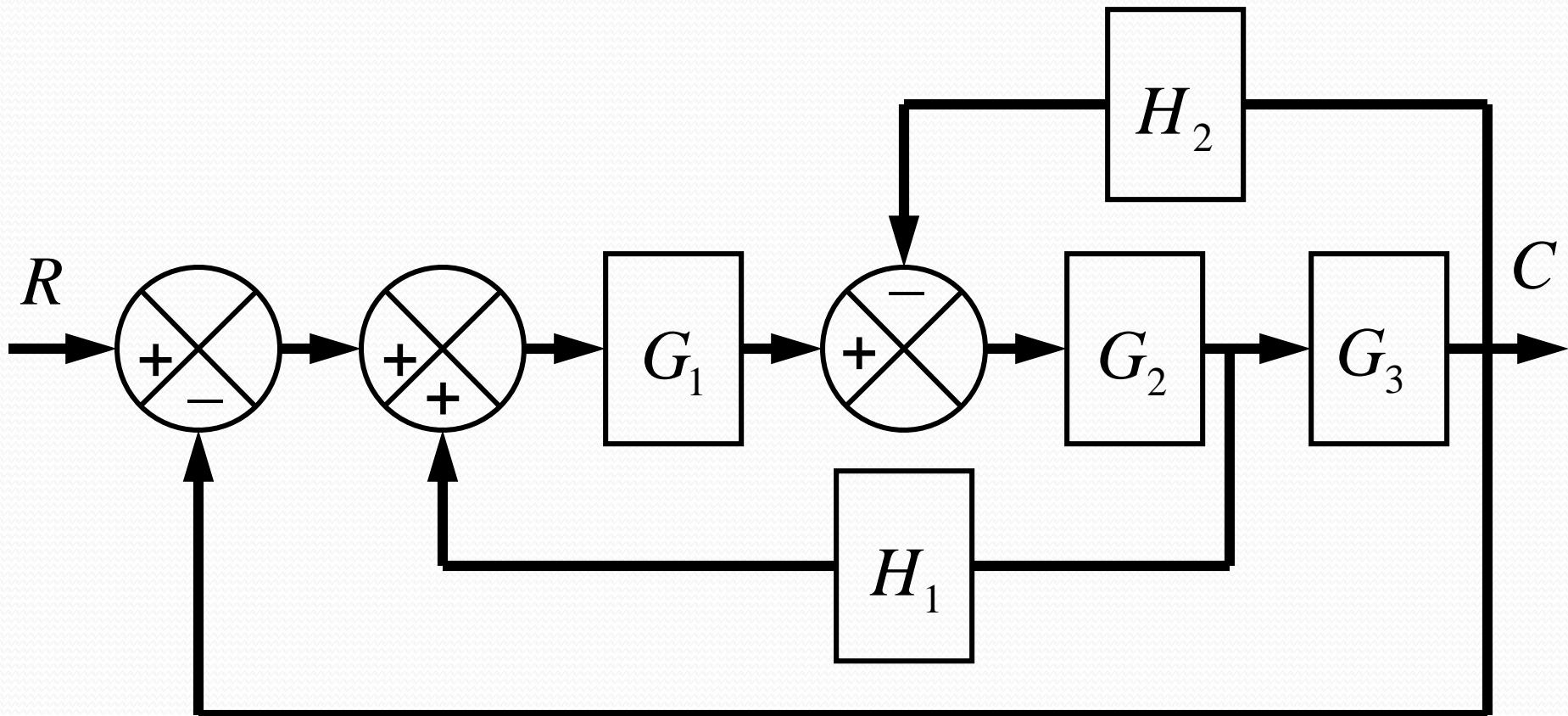
| Transformation                               | Equation            | Block Diagram                                                                        | Equivalent Block Diagram                                                              |
|----------------------------------------------|---------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 6a<br>Rearranging Summing Points             | $Z = W \pm X \pm Y$ |    |    |
| 6b<br>Rearranging Summing Points             | $Z = W \pm X \pm Y$ |    |    |
| 7<br>Moving a Summing Point Ahead of a Block | $Z = PX \pm Y$      |   |   |
| 8<br>Moving a Summing Point Beyond a Block   | $Z = P[X \pm Y]$    |  |  |

# Transformation Theorems

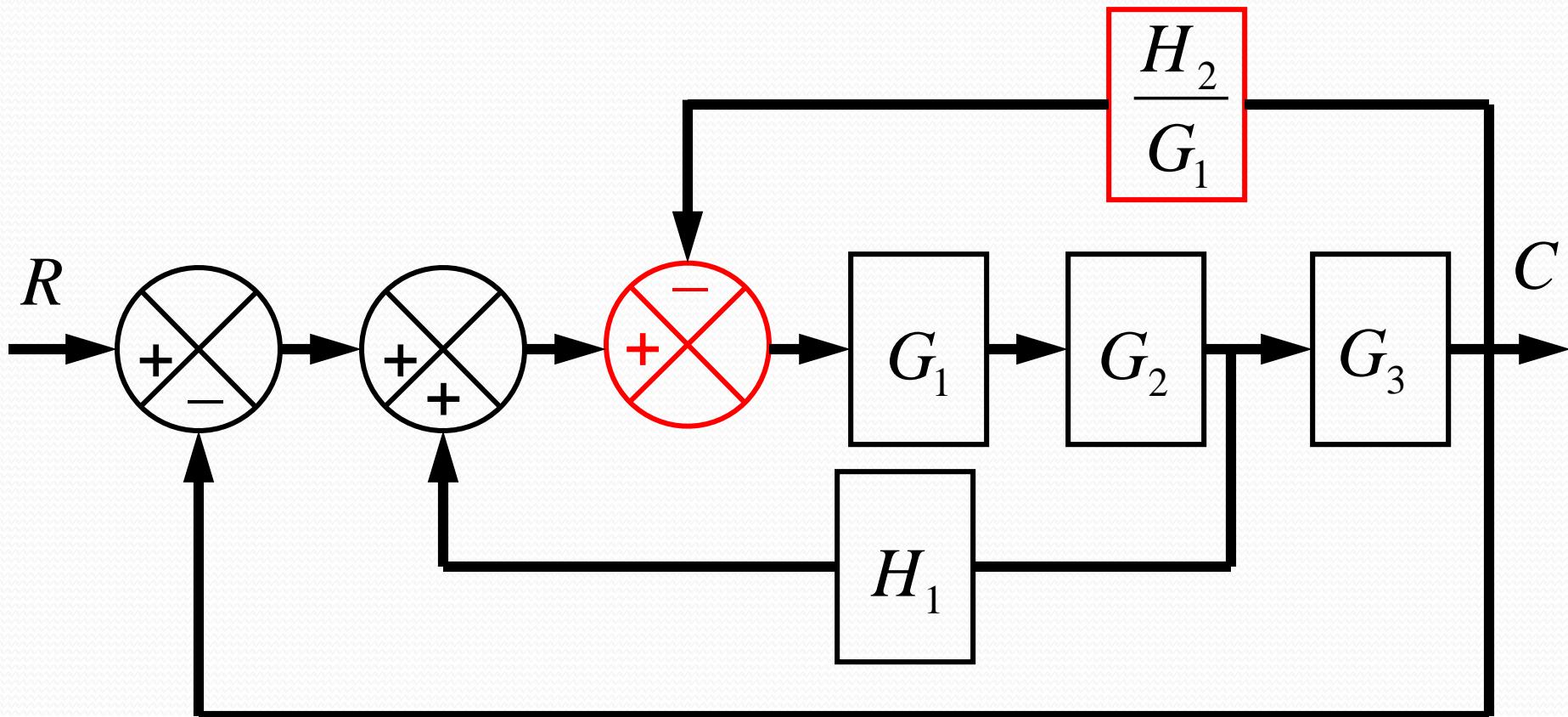
## Continue:

| Transformation |                                                 | Equation      | Block Diagram                                                                        | Equivalent Block Diagram                                                              |
|----------------|-------------------------------------------------|---------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 9              | Moving a Takeoff Point Ahead of a Block         | $Y = PX$      |    |    |
| 10             | Moving a Takeoff Point Beyond a Block           | $Y = PX$      |    |    |
| 11             | Moving a Takeoff Point Ahead of a Summing Point | $Z = X \pm Y$ |   |   |
| 12             | Moving a Takeoff Point Beyond a Summing Point   | $Z = X \pm Y$ |  |  |

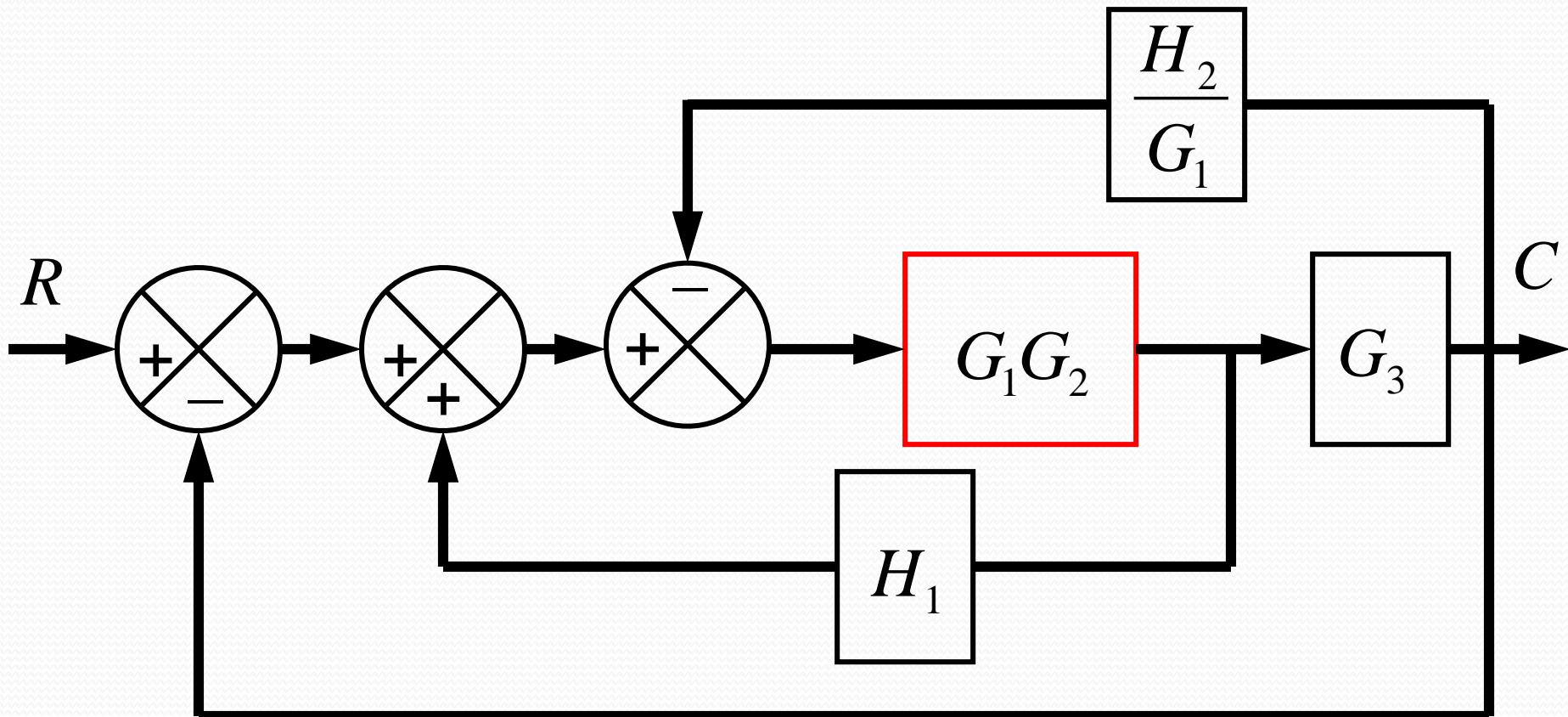
## Example-1: Reduce the Block Diagram.



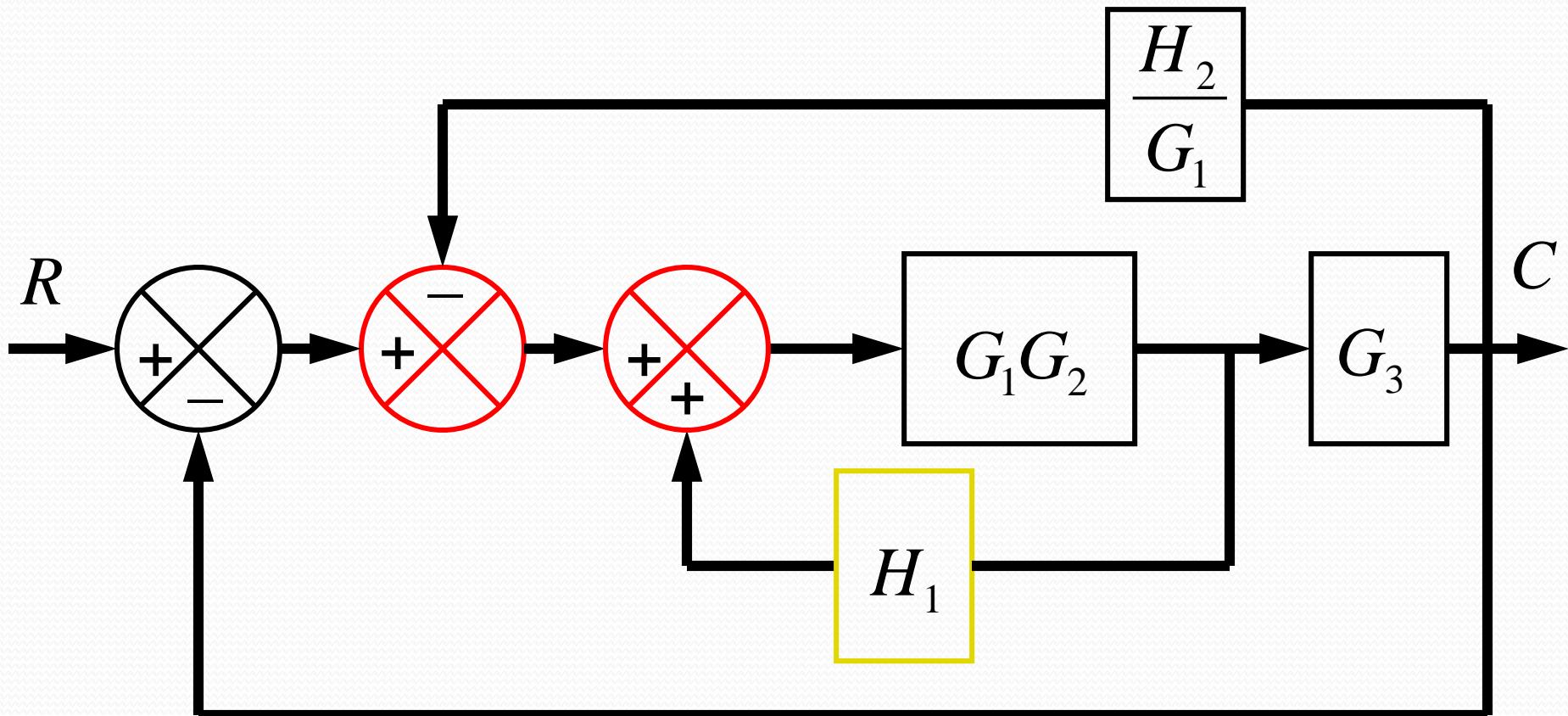
## Example-1:



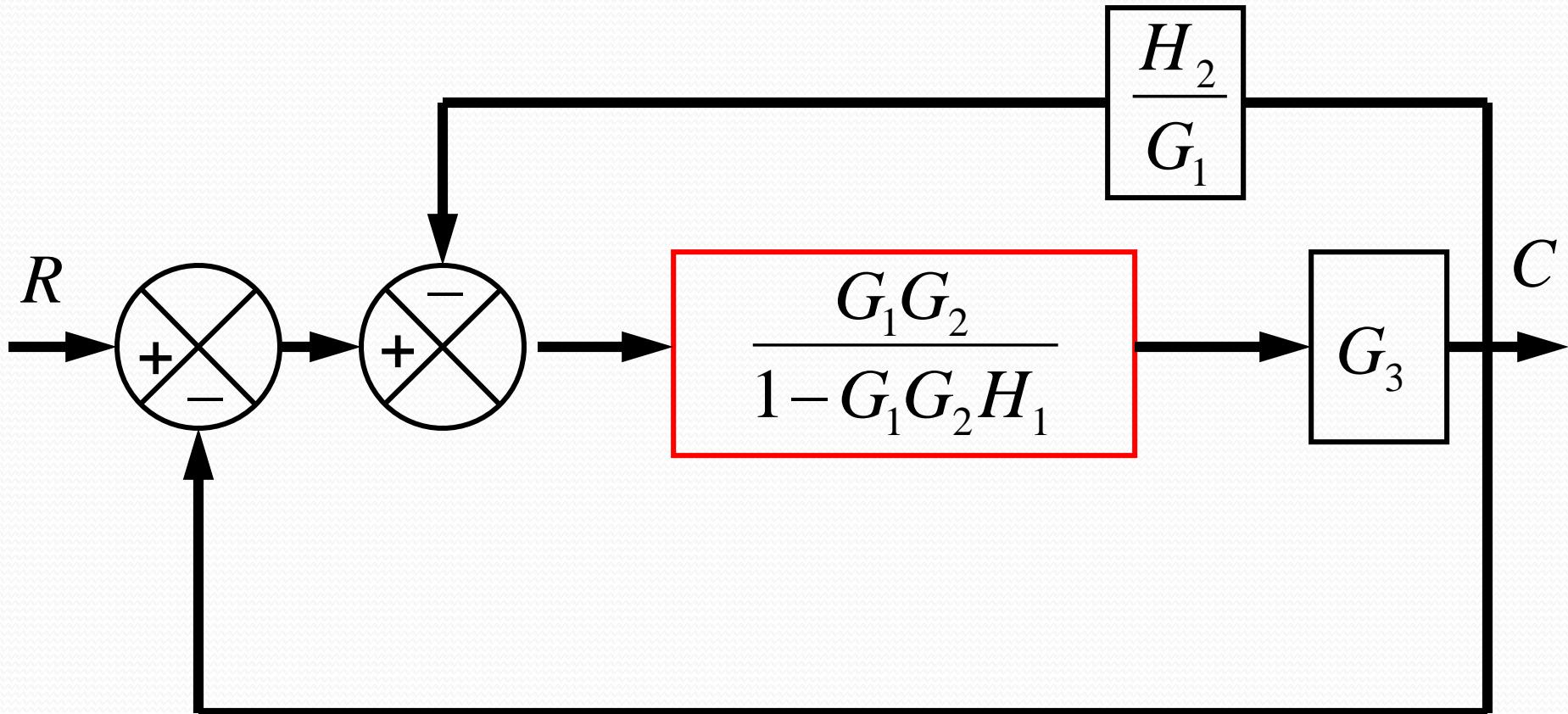
## Example-1:



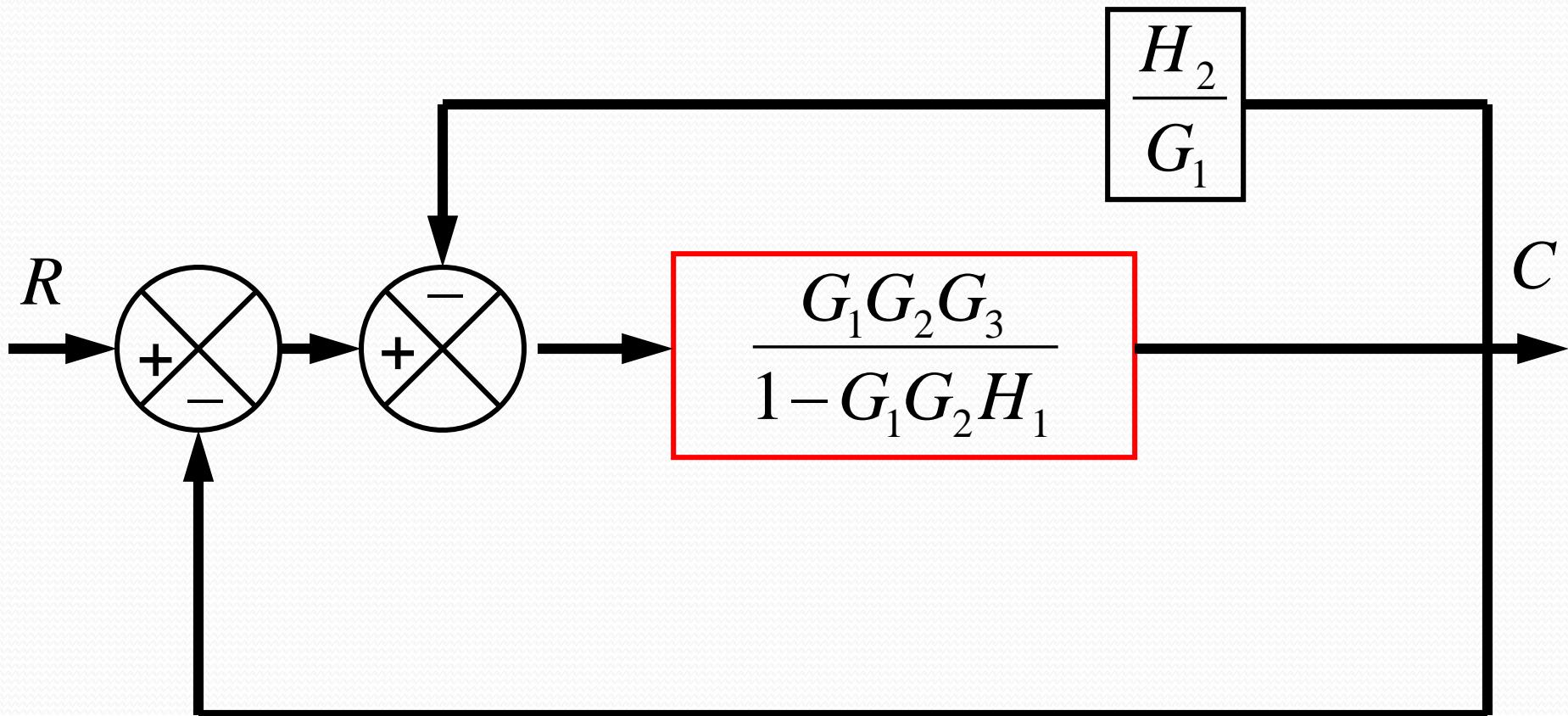
## Example-1:



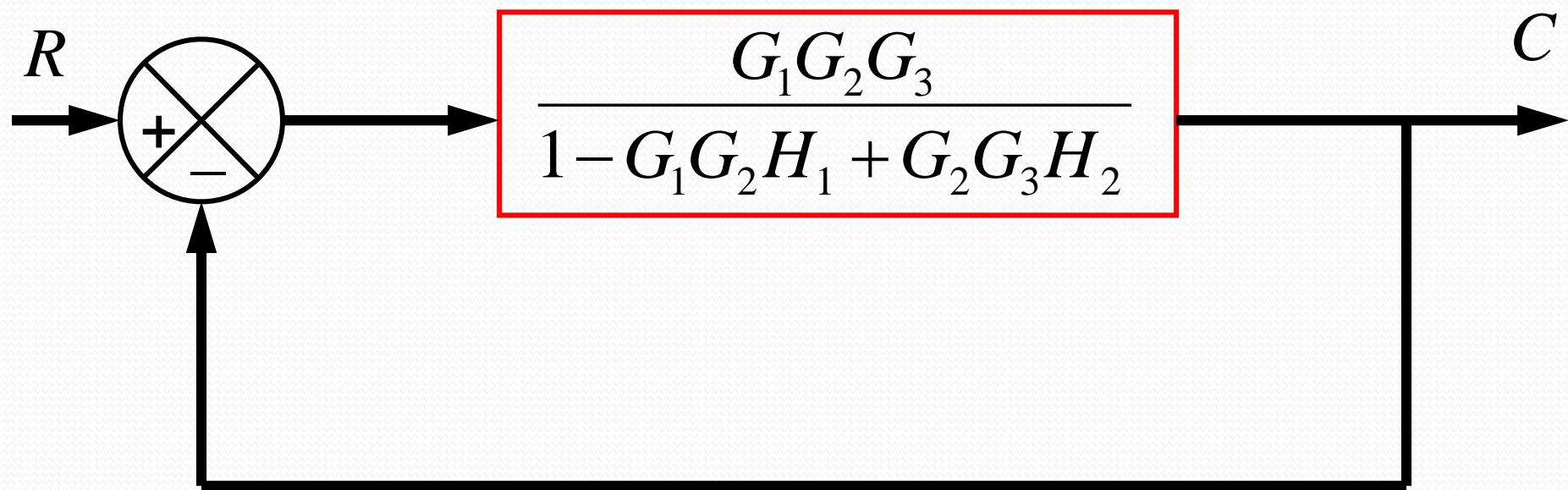
## Example-1:



## Example-1:



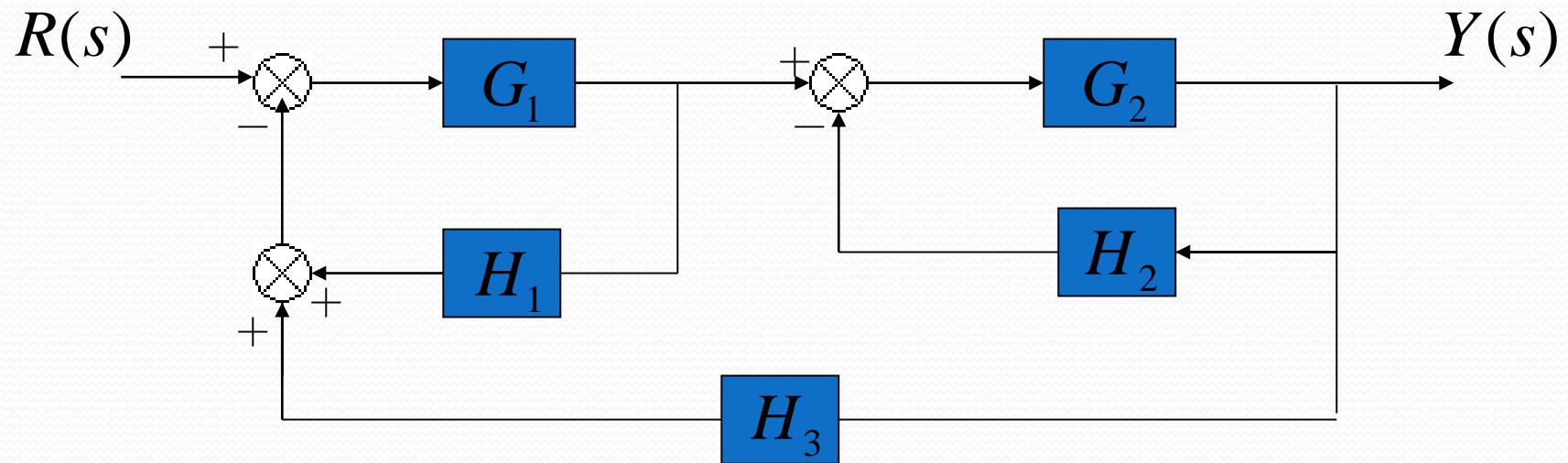
## Example-1:



Example-1:

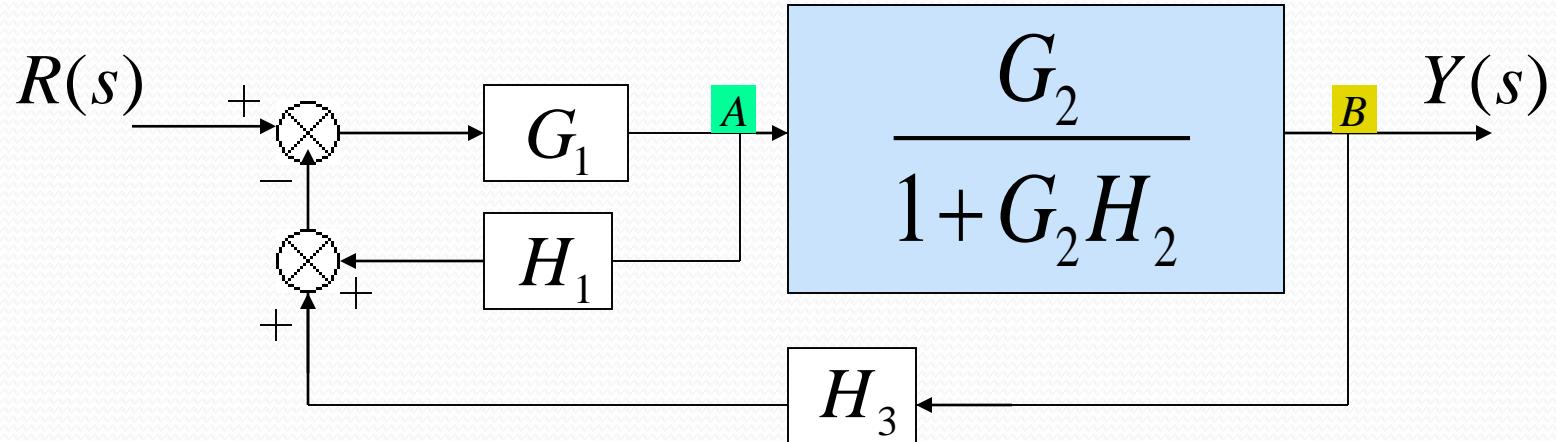
$$R \xrightarrow{\frac{G_1 G_2 G_3}{1 - G_1 G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 G_3}} C$$

Example 2: Find the transfer function of the following block diagrams.



## Solution:

## 1. Eliminate loop I

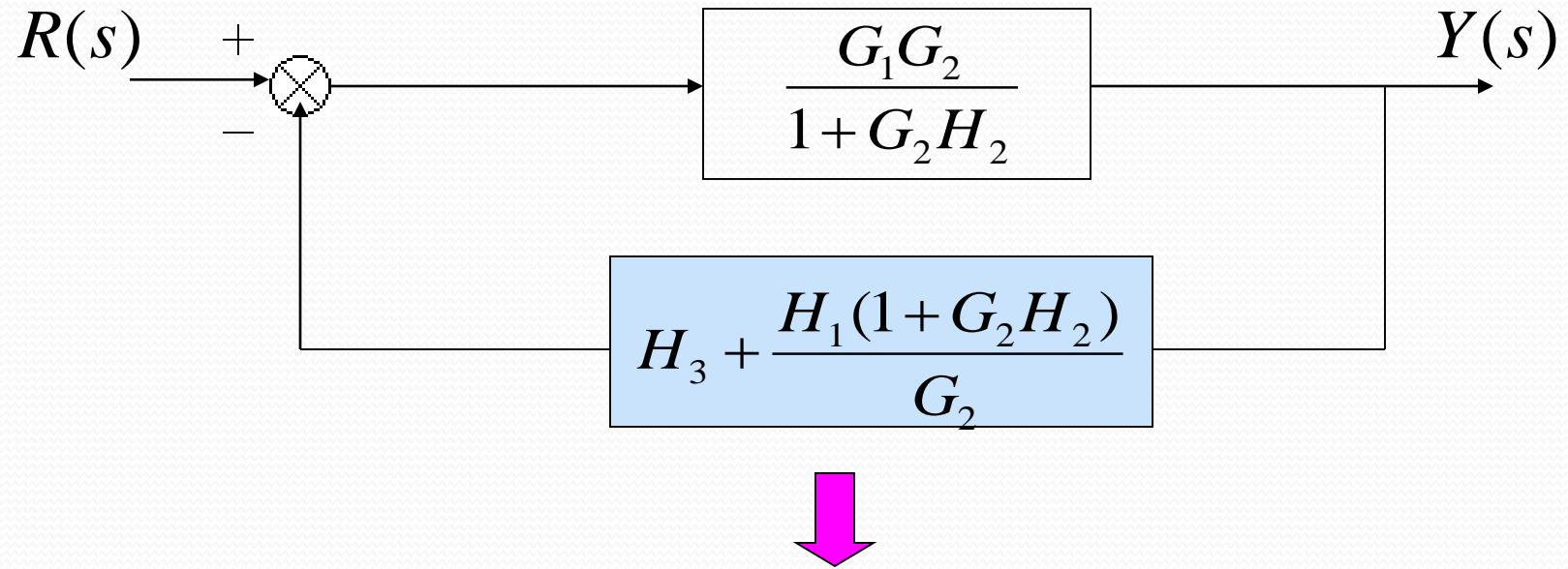


## 2. Moving pickoff point A behind block



Block diagram of a control system. The forward path consists of a reference input  $R(s)$ , a summing junction, a controller  $G_1$ , a block  $A$ , and a plant  $\frac{G_2}{1+G_2H_2}$ . The feedback path consists of a summing junction, a controller  $H_1$ , a block  $B$ , and a plant  $\frac{1+G_2H_2}{G_2}$ . A feedback signal  $H_3$  is also present. A pink oval highlights the feedback loop, and a pink arrow points to the text "Not a feedback loop".

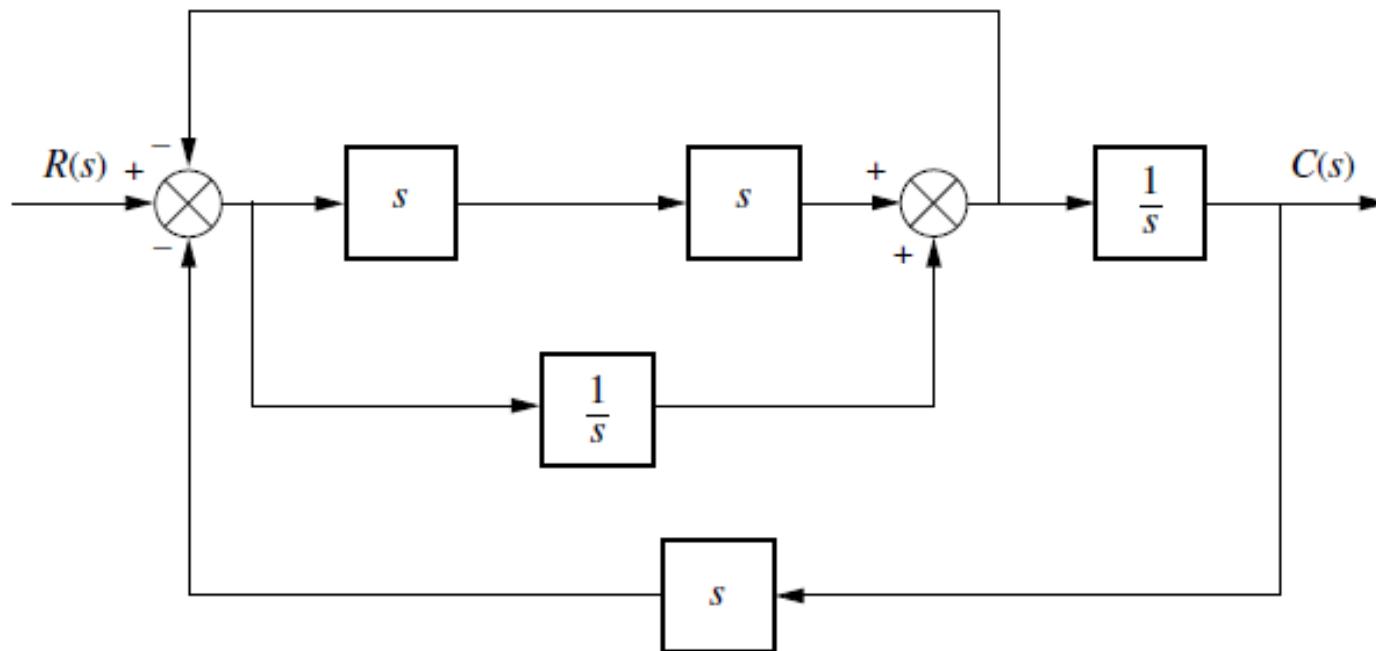
### 3. Eliminate loop II



$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2}{1 + G_2 H_2 + G_1 G_2 H_3 + G_1 H_1 + G_1 G_2 H_1 H_2}$$

# Skill Assessment Exercise:

**PROBLEM:** Find the equivalent transfer function,  $T(s) = C(s)/R(s)$ , for the system



# Answer of Skill Assessment

## Exercise:

**ANSWER:**  $T(s) = \frac{s^3 + 1}{2s^4 + s^2 + 2s}$