

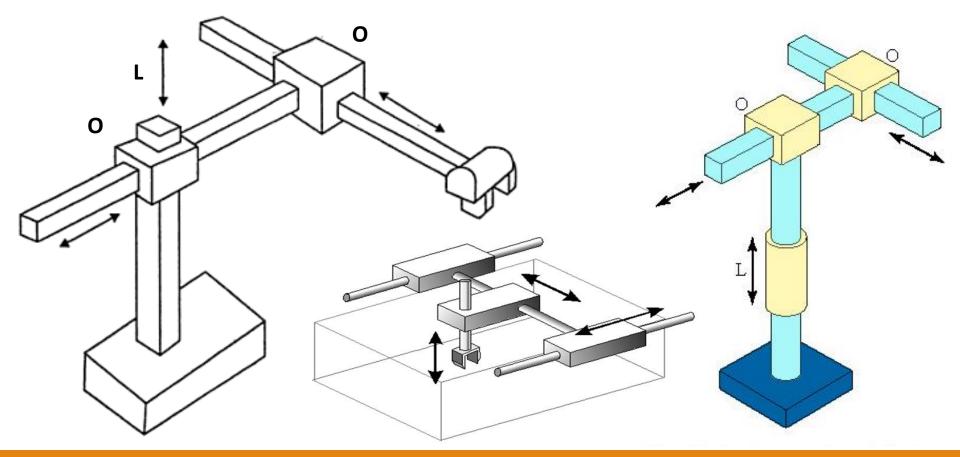
Title : Basic Configurations of ROBOT

Date: 28/04/2020

- Name of Faculty: Mr. Ankit P. Solanki
- Lecture No: (04) 12:30 to 01:30

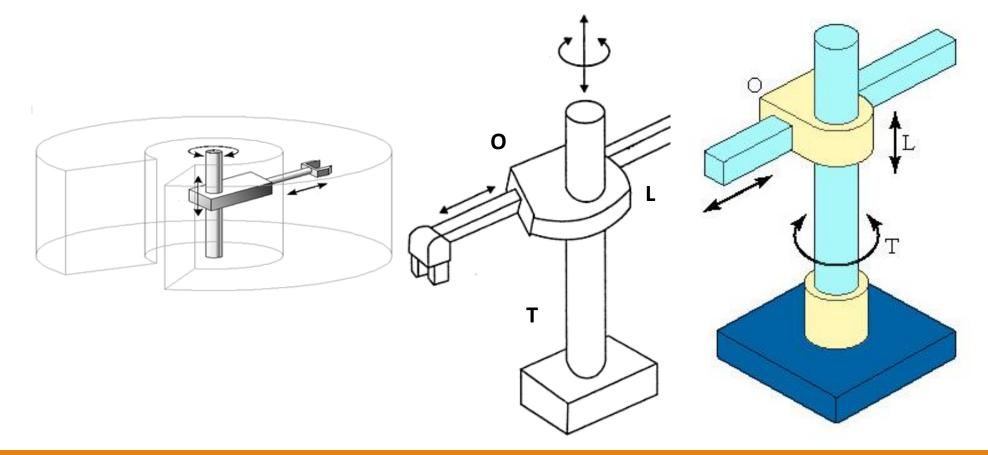
Source of Information : Industrial Automation & Robotics by Er. A. K. Gupta & S. K. Arora, University Science Press, Laxmi Publishing Pvt. Ltd.

□ Work envelope or work volume of a robot can be defined as the space within the end

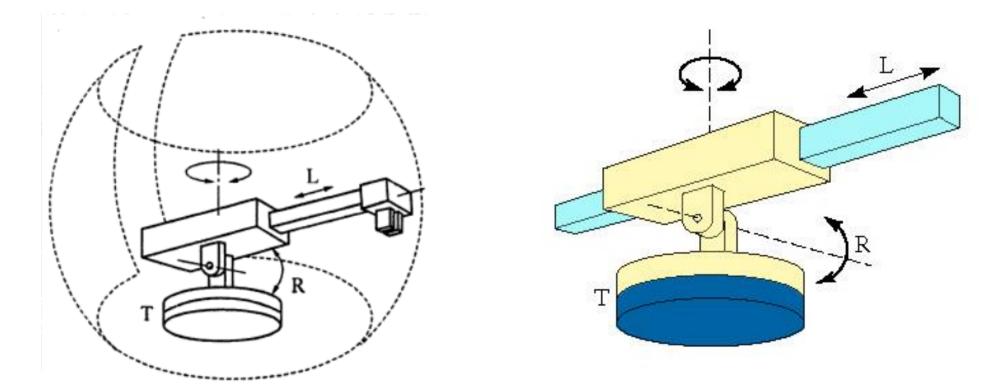

effector of the robot can operate or reach.

Based on the coordinate system of motion of the manipulator and end effector, there are four basic configurations of robots:

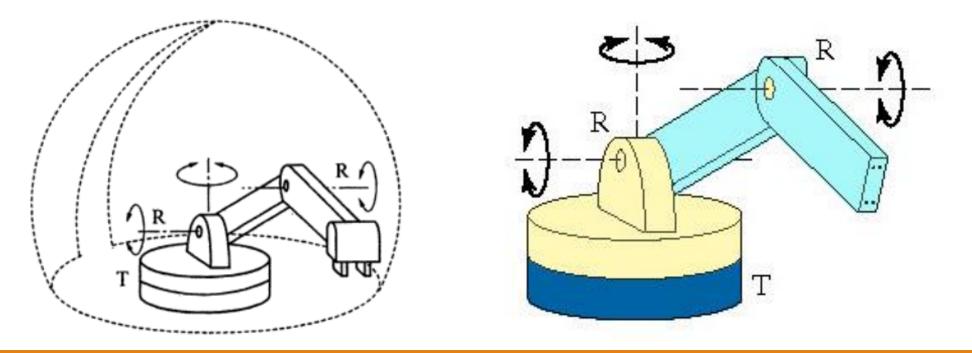
- 1) Cartesian Configuration Robots (LOO)
- 2) Cylindrical Configuration Robots (TLO)
- 3) Polar (Spherical) Configuration Robots (TRL)
- 4) Jointed-Arm (Articulated) Configuration Robots
 - 1) Revolute Robots (TRR)
 - 2) SCARA Robots (VRO)


Cartesian Configuration Robots: (LOO)

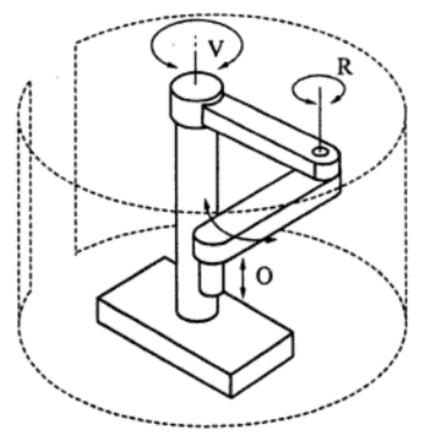
- Provides three linear motions along three mutually perpendicular axes: X, Y, and Z. However, there is no rotary motion.
- Configuration provides rectangular work envelope.
- Used for assembly, palletizing and machine tool loading.

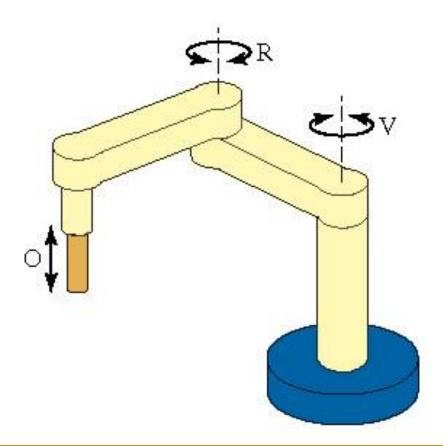

Cylindrical Configuration Robots: (TLO)

- Provides two linear and one rotary motions.
- Configuration provides cylindrical work envelope, has good work area to floor area ratio.
- Used for loading and unloading on machine tools.


Polar (Spherical) Configuration Robots: (TRL)

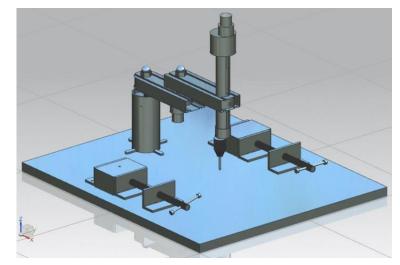
- Provides one linear and two rotary motions.
- Configuration provides spherical work envelope.
- Used for spot welding and manipulation (Handling) of heavy loads.

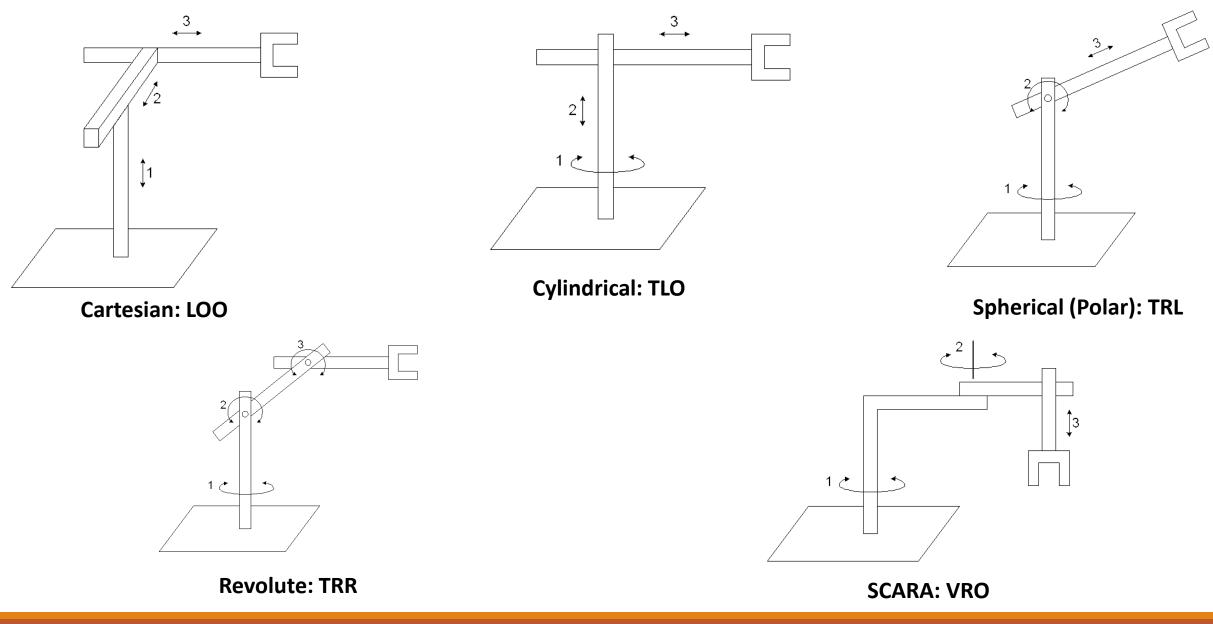

Revolute Robots: (TRR)

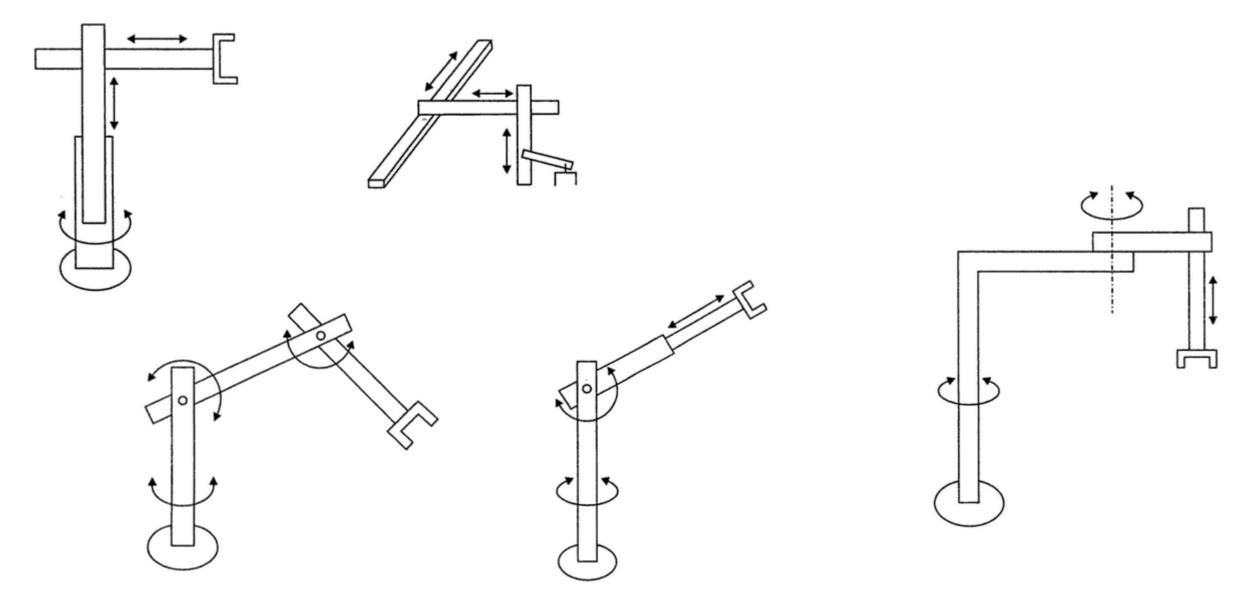

- Provides three rotary motions about three mutually perpendicular axes.
- Configuration is similar to that of human arm.
- Consists of two straight links, corresponding to the human forearm and upper arm, connected by a rotary joint.
- Provides spherical work envelope, has excellent work areas to floor area ratio.
- Used to spray painting, seam welding, spot welding, assembly, heavy material handling, etc.

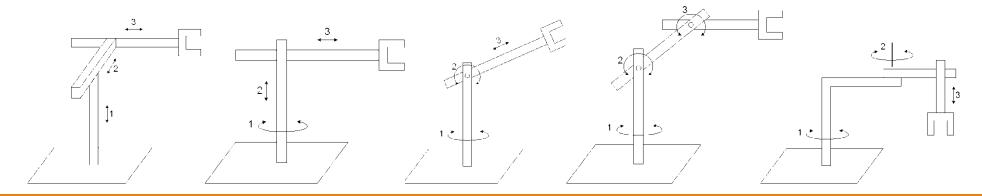
SCARA (Selective Compliance Assembly Arm) Robots: (VRO)

- Provides one linear and two rotary motions.
- Provides cylindrical work envelope with high speed drive motors.
- Used for assembly operations.






SCARA ROBOT



Configurations	Manipulator	Motions	Work Envelope	Application	
Cartesian	LOO	3 Linear	Rectangular	Assembly, Palletizing Machine Tool Loading	
Cylindrical	TLO	2 Linear , 1 Rotary	Cylindrical	Loading & Unloading on Machine Tools	
Spherical (Polar)	TRL	1 Linear , 2 Rotary	Spherical	Spot Welding , Handling of Heavy Loads.	
Revolute	TRR	3 Rotary	Spherical	Spray Painting, Seam Welding, Spot Welding, Assembly, Heavy Material Handling	
SCARA	VRO	1 Linear, 2 Rotary	Cylindrical	Assembly Operations	

L = Linear; O = Orthogonal; R = Rotational; T = Twisting; V = Revolving

$\overleftarrow{Features}_{Application}$	Degree of Freedom	Structure	Drive System	Program	Control System
Material Handling	3–5	Jointed arm	Pneumatic or Hydraulic	Manual or Powered lead through	Limited sequence or point-to-point playback
Machine Loading and Unloading	45	Polar, Cylindrical, Jointed arm	Electric or Hydraulic for (Heavy pay loads)	Powered lead through	Limited sequence or point-to-point playback
Spot Welding	5–6	Polar, Jointed arm	Hydraulic or Electric (light)	Powered lead through	Point-to-point playback
Arc Welding	56	Polar, Cartesian, Jointed arm	Electric or Hydraulic	Manual or Powered lead through	Continuous path playback
Spray Painting	6 or more	Jointed arm	Hydraulic	Manual lead through	Continuous path playback
Assembly line	Assembly line 3–6 Jointed arm, Cartesian, SCARA.		Electric	Powered lead through or textual language	Point-to-point or continuous.

$\downarrow \begin{array}{c} Features \\ \rightarrow \\ Application \end{array}$	Degree of Freedom	Structure	Drive System	Program	Nature of Task	Control System
 Material handling 	3–5	Jointed adaptable robot arm	Servo motors	Programmable automation control (PAC)	Safe/hazardous complicated	Motion controllers with sensor technology.
 Part loading and unloading 	4–5 Multiple arms	Polar, cylindrical, Jointed arm (Adaptable)	Electronic, Servo motors (For heavy payloads)	Programmable automation control (PAC)	Complicated and safe environs.	Micro controllers and Motion controllers with vision.
 Spot (Tack) Welding 	5–6	Polar, Jointed adaptable robotic arm	Electronic stepper Motors.	Programmable Logic controllers (PLC)	Simple and safe.	Micro controllers with changeable functions.
Arc Welding	5–6	Polar, modular cartesian with adaptable jointed arm.	Direct drive servo motors	Programmable automation control (PAC)	Complicated and unsafe.	Continuous path motion controllers with sensor technology.
• Spray Coating	6 or more	Jointed arm with adaptable gun	Hydraulic actuators	Programmable Logic Controllers (PLC)	Simple and unsafe.	Continuous path motion controllers.
• Electronic Assembly	3–6 Multiple arms coupled motion.	Jointed adaptable, cartesian modular robotic arm.	Stepper motors and direct drives	Programmable Automation Control with Controller area Network (CAN)	Complicated and safe.	Micro controllers, nodes with sensors and end effectors with vision.

01 Draw neat sketches and explain various robot configurations. **or** Explain the **07** term "Work Volume" with respect to robots and sketch configurations of industrial robots, showing work envelope.

Ankit P. Solanki (8141044274) ankit.solanki@srict.in

Shroff S. R. Rotary Institute of Chemical Technology