

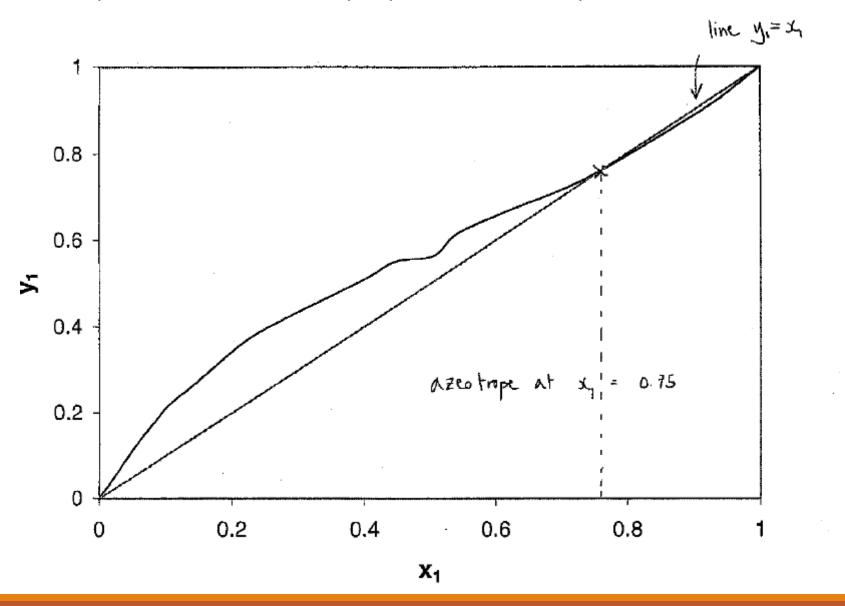
Title: Name of Topic: Margules Equations and VanLaar Equations

Date: 23-03-2020

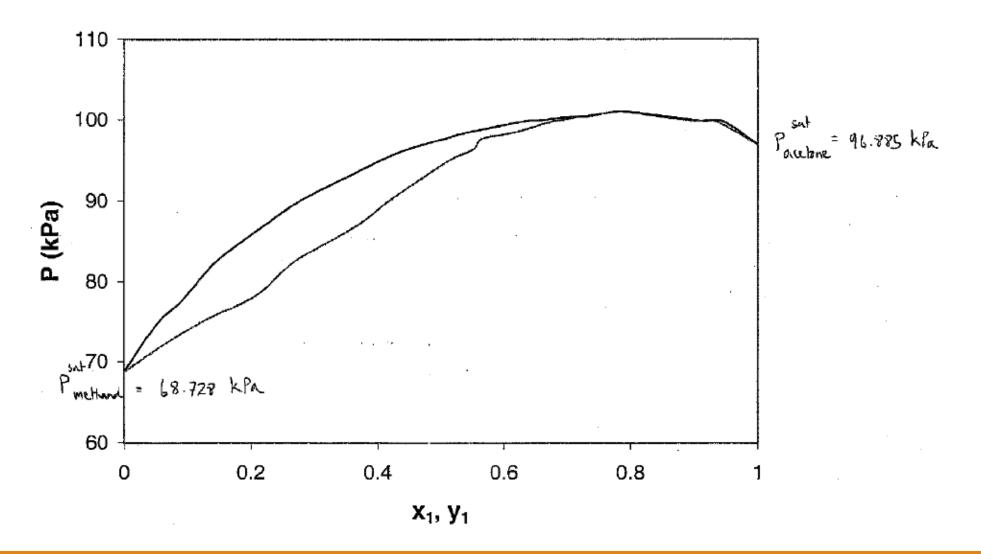
Name of Faculty: Krunal J. Suthar

Lecture No: 01 (09:30 to 10:30 a.m.)

Source of information: Smith J.M, Van Ness H.C., Abbott M. M, "Introduction to

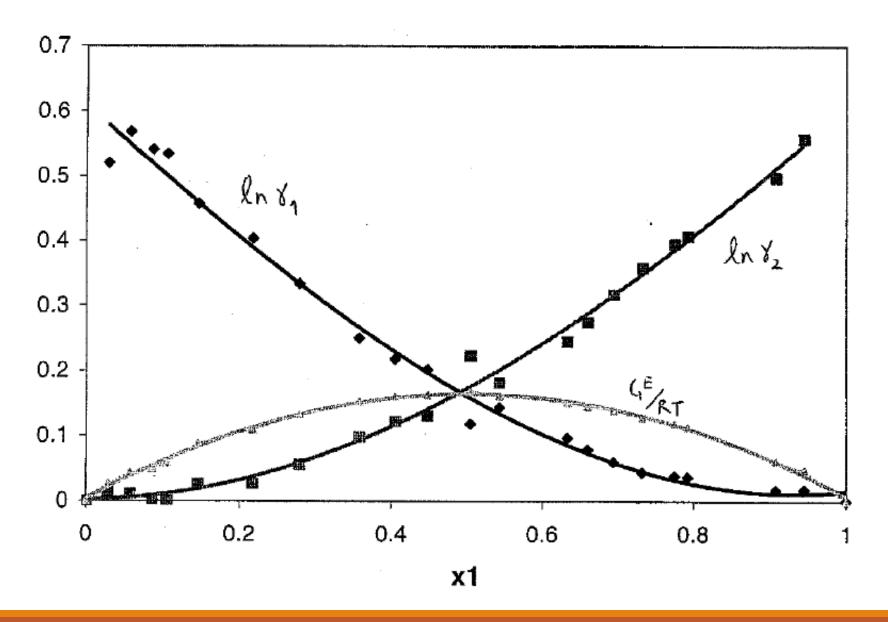

Chemical Engineering Thermodynamics"

The following VLE data were collected for acetone(1)/methanol(2) at 55 °C:


P (kPa)	X ₁	У1	P (kPa)	X ₁	У1	P (kPa)	x ₁	У1
68.728	0.0000	0.0000	93.206	0.3579	0.4779	100.467	0.7327	0.7383
72.278	0.0287	0.0647	95.017	0.4050	0.5135	100.999	0.7752	0.7729
75.279	0.0570	0.1295	96.365	0.4480	0.5512	101.059	0.7922	0.7876
77.254	0.0858	0.1848	97.646	0.5052	0.5644	99.877	0.9080	0.8959
78.951	0.1046	0.2190	98.462	0.5432	0.6174	99.799	0.9448	0.9336
82.528	0.1452	0.2694	99.811	0.6332	0.6772	96.885	1.0000	1.0000
86.762	0.2173	0.3633	99.950	0.6605	0.6926			
90.088	0.2787	0.4184	100.278	0.6945	0.7124			

- a) Plot y_1 vs x_1 identifying the location of the azeotrope.
- b) Generate a P-xy diagram, noting the values of the saturation pressures for acetone and methanol at 55 °C.
- c) Determine values of γ_1 , γ_2 , and G^E/RT , and plot $\ln \gamma_1$, $\ln \gamma_2$, and G^E/RT vs. x_1 on one graph.
- d) Determine the parameters that best fit the data by the Margules equation. Prepare a P-xy diagram that compares the experimental points with the curves determined by this correlation.
- e) Determine the parameters that best fit the data by the van Laar equation. Prepare a P-xy diagram that compares the experimental points with the curves determined by this correlation.
- f) Determine the composition of the azeotrope using the parameters obtained for the Margules and van Laar equations.

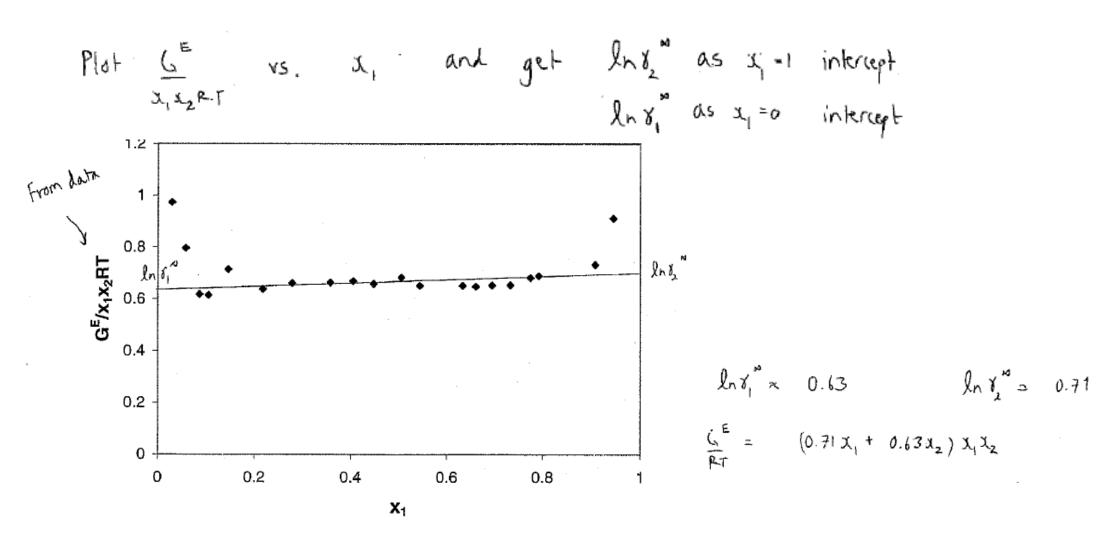
Solution Azeotrope is formed when, the liquid phase acetone composition is 0.75

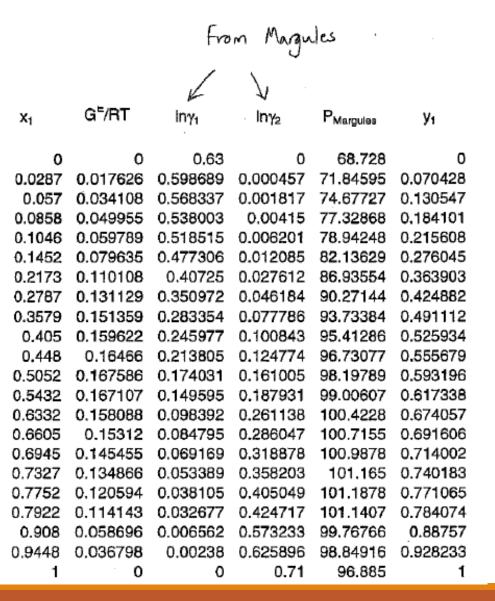

 b) Generate a P-xy diagram, noting the values of the saturation pressures for acetone and methanol at 55 °C.

c) Determine values of γ_1 , γ_2 , and G^E/RT , and plot $\ln \gamma_1$, $\ln \gamma_2$, and G^E/RT vs. x_1 on one graph.

			$\gamma_i = \frac{y}{x_i}$	$\frac{V_i P}{P_i^S}$	$\frac{G^E}{RT} = x_1 ln \gamma_1 + x_2 ln \gamma_2$			
P (kPa)	x ₁	y 1	γ1	γ ₂	lny ₁	lnγ₂	G ^E /RT	
68.728	0	0	#DIV/0!	1	#DIV/0!	0	0	
72.278	0.0287	0.0647	1.681791	1.012675	0.519859	0.012595	0.027154	
75.279	0.057	0.1295	1.765274	1.011107	0.568306	0.011046	0.04281	
77.254	0.0858	0.1848	1.71743	1.002329	0.540829	0.002326	0.04853	
78.951	0.1046	0.219	1.706136	1.001977	0.534231	0.001975	0.057649	
82.528	0.1452	0.2694	1.580432	1.02632	0.457698	0.02598	0.088665	
86.762	0.2173	0.3633	1.497196	1.026917	0.403594	0.026561	0.10849	
90.088	0.2787	0.4184	1.395935	1.056919	0.333564	0.055358	0.132894	
93.206	0.3579	0.4779	1.284584	1.10271	0.250435	0.09777	0.152409	
95.017	0.405	0.5135	1.243455	1.130403	0.217894	0.122575	0.161179	
96.365	0.448	0.5512	1.223754	1.139986	0.201923	0.131016	0.162782	
97.646	0.5052	0.5644	1.125956	1.250774	0.118633	0.223763	0.170651	
98.462	0.5432	0.6174	1.155098	1.199924	0.144186	0.182258	0.161577	
99.811	0.6332	0.6772	1.101788	1.278053	0.096934	0.245338	0.151369	
99.95	0.6605	0.6926	1.081772	1.31678	0.078601	0.275189	0.145343	
100.278	0.6945	0.7124	1.061697	1.373566	0.059869	0.31741	0.138548	
100.467	0.7327	0.7383	1.044897	1.431181	0.043919	0.3585	0.128006	
100.999	0.7752	0.7729	1.03937	1.484582	0.038615	0.395133	0.11876	
101.059	0.7922	0.7876	1.037025	1.50297	0.036356	0.407443	0.113468	
99.877	0.908	0.8959	1.017144	1.644352	0.016999	0.497346	0.061191	
99.799	0.9448	0.9336	1.017866	1.746713	0.017708	0.557736	0.047518	
96.885	1	1	1	#DIV/01	0	#DIV/0!	0	

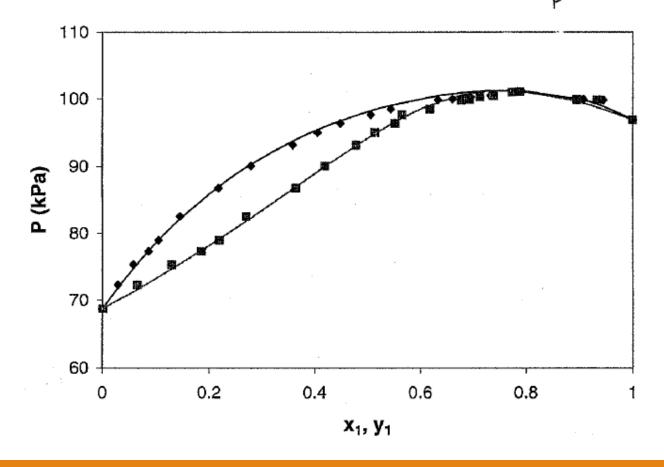
c) Determine values of γ_1 , γ_2 , and G^E/RT , and plot $\ln \gamma_1$, $\ln \gamma_2$, and G^E/RT vs. x_1 on one graph.

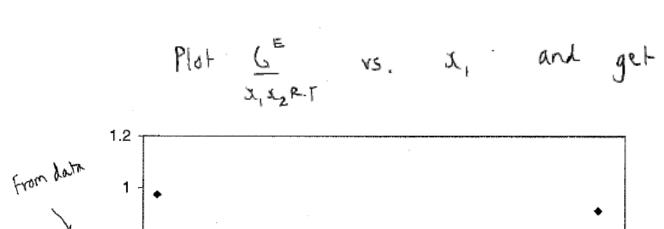

$$\frac{G^E}{RT} = (A_{21}x_1 + A_{12}x_2)x_1x_2$$


$$\frac{G^E}{x_1x_2RT} = A_{21}x_1 + A_{12}x_2$$

$$\ln \gamma_1 = x_2^2 [A_{12} + 2(A_{21} - A_{12}) x_1]$$

$$\ln \gamma_2 = x_1^2 [A_{21} + 2(A_{12} - A_{21}) x_2]$$


Plot
$$G^{E}$$
 vs. x_{1} and get $\ln x_{2}^{m}$ as $x_{1}=1$ intercept $\ln x_{1}^{m}$ as $x_{1}=0$ intercept



$$\ln \gamma_1 = x_2^2 [A_{12} + 2(A_{21} - A_{12}) x_1]$$

 $\ln \gamma_2 = x_1^2 [A_{21} + 2(A_{12} - A_{21}) x_2]$

$$P = Y_1 x_1 P_1 \xrightarrow{snt} + Y_2 x_2 P_2 \xrightarrow{snt}$$
then $y_1 = Y_1 x_1 P_1 \xrightarrow{snt}$

0.8

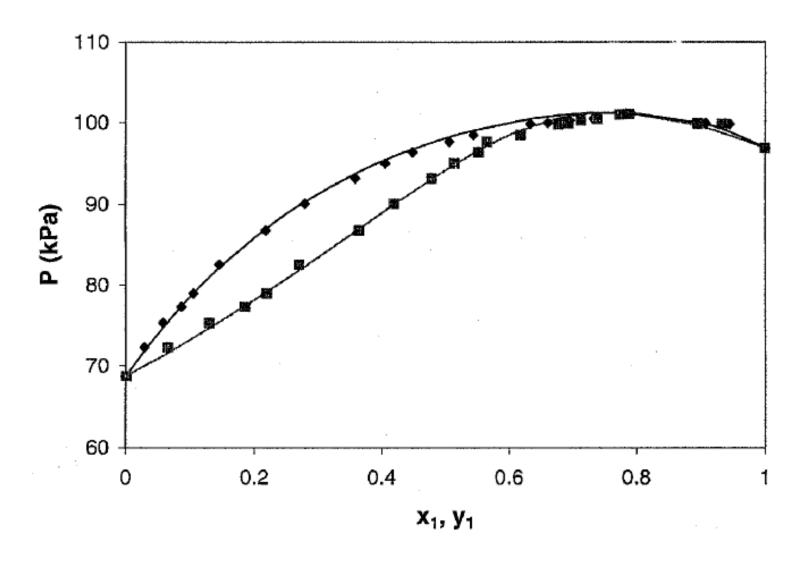
0.4

 \mathbf{X}_1

0.6

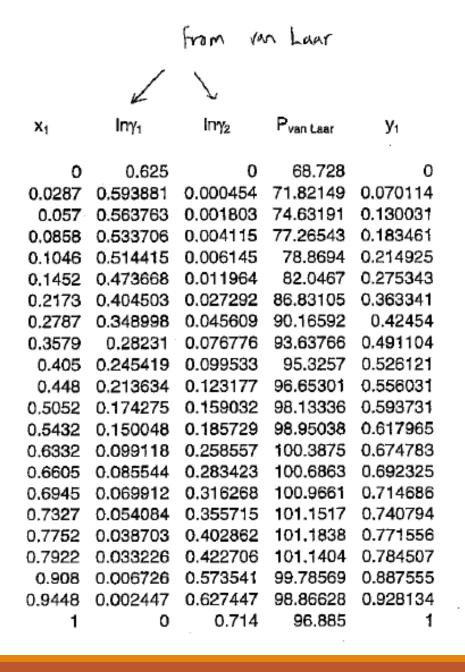
0.8

0.2


0 +

0.2

 G^E/x_1x_2RT


$$\ln x_1^{\prime\prime} \approx 0.63$$
 $\ln x_2^{\prime\prime} = 0.7$
 $\frac{\zeta_1^E}{RT} = (0.71 \times_1 + 0.63 \times_2) \times_1 \times_2$

		Fro	m Magu	les ·		
		6	V			
\mathbf{x}_{1}	G⁵/RT	lnγ ₁	Iny ₂	P _{Margules}	У1	$\ln \gamma_1 = x_2^2 [A_{12} + 2(A_{21} - A_{12}) x_1]$
0	0	0.63	0	68.728	0	$\ln \gamma_2 = x_1^2 \left[A_{21} + 2 \left(A_{12} - A_{21} \right) x_2 \right]$
0.0287	0.017626	0.598689	0.000457	71.84595	0.070428	72 11 21 1 12 21, 21
0.057	0.034108	0.568337	0.001817	74.67727	0.130547	
0.0858	0.049955	0.538003	0.00415	77.32868	0.184101	ant ent
0.1046	0.059789	0.518515	0.006201	78.94248	0.215608	P = 8, x, P, 3n+ 82 x2 P2 50)
0.1452	0.079635	0.477306	0.012085	82.13629	0.276045	
0.2173	0.110108	0.40725	0.027612	86.93554	0.363903	14 = V . 0.30}
0.2787	0.131129	0.350972	0.046184	90.27144	0.424882	then y, = 8, oc, p, sat
0.3579	0.151359	0.283354	0.077786	93.73384	0.491112	D
0.405	0.159622	0.245977	0.100843	95.41286	0.525934	r .
0.448	0.16466	0.213805	0.124774	96.73077	0.555679	
0.5052	0.167586	0.174031	0.161005	98.19789	0.593196	
0.5432	0.167107	0.149595	0.187931	99.00607	0.617338	
0.6332	0.158088	0.098392	0.261138	100.4228	0.674057	
0.6605	0.15312	0.084795	0.286047	100.7155	0.691606	
0.6945	0.145455	0.069169	0.318878	100.9878	0.714002	
0.7327	0.134866	0.053389	0.358203	101.165	0.740183	
0.7752	0.120594	0.038105	0.405049	101.1878	0.771065	
0.7922	0.114143	0.032677	0.424717	101.1407	0.784074	
0.908	0.058696	0.006562	0.573233	99.76766	0.88757	
0.9448	0.036798	0.00238	0.625896	98.84916	0.928233	
1	. 0	0	0.71	96.885	1	

x ₁	G⁵/RT	x_1x_2RT/G^E		
0 0.0287 0.057 0.0858 0.1046 0.1452 0.2173 0.2787 0.3579 0.405	0.027154 0.04281 0.04853 0.057649 0.088665 0.10849 0.132894 0.152409 0.161179	1.026618 1.255576 1.616297 1.624632 1.399841 1.567703 1.51268 1.507833 1.495077	$Van Laar eqn.$ $ln \delta_{1} = A_{12} \left(1 + \frac{A_{12} x_{1}}{A_{21}^{\prime} x_{2}} \right)^{-2}$ $ln \delta_{2} = A_{21} \left(1 + \frac{A_{21} x_{2}}{A_{12}^{\prime} x_{1}} \right)^{-2}$	
0.448 0.5052 0.5432 0.6332 0.6605 0.6945 0.7327 0.7752 0.7922 0.908 0.9448	0.162782 0.170651 0.161577 0.151369 0.145343 0.138548 0.128006 0.11876 0.113468 0.061191 0.047518 0	1.464819 1.535698 1.534386 1.542835 1.531382 1.530011	$\frac{\lambda_1 \lambda_2}{\zeta_1^2/RT} = \frac{\lambda_1}{A_{21}'} + \frac{\lambda_2}{A_{12}'} \qquad Plot \qquad \frac{\lambda_1 \lambda_2}{\zeta_1^2/RT} vs.$ intercept at $\lambda_1 = 1$ gives $1/A_{21}'$ $\lambda_1 = 0 gives \qquad 1/A_{12}'$	X ₁

$$\ln \gamma_{1} = A z_{2}^{2} = \frac{A x_{2}^{2}}{\left[\left(\frac{A}{B}\right) x_{1} + x_{2}\right]^{2}} \qquad \ln \gamma_{2} = B z_{1}^{2} = \frac{B x_{1}^{2}}{\left[x_{1} + \left(\frac{B}{A}\right) x_{2}\right]^{2}}$$

$$P = Y_{1} X_{1} P_{1}^{4a^{4}} + Y_{2} X_{2} P_{3}^{5a^{4}}$$

$$110$$

$$100$$

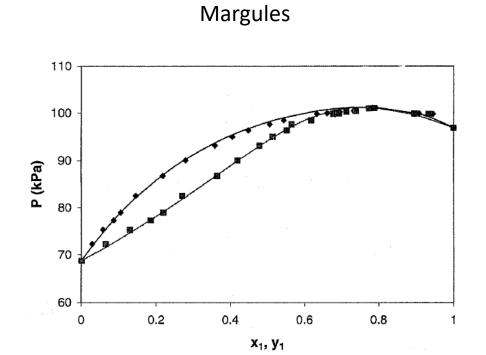
$$80$$

$$70$$

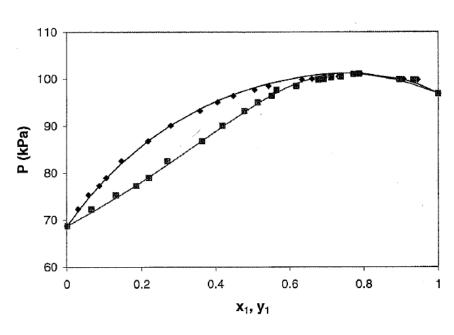
$$60$$

$$0$$

$$0.2$$


$$0.4$$

$$0.6$$


$$0.8$$

$$1$$

$$X_{1}, Y_{1}$$

Van Laar

Magules

van Laar

$$x_1 = 0.761$$

- Solve the same problem using MS Excel and submit the assignment by 25th March 2020
- The Hard copy can be submitted on 31/3/2020.
- Krunal J. Suthar (9974090049)

NEXT LECTURE: Thermodynamic Consistency of VLE