

Title : Time Varying Fields and Maxwell's Equations Date:20/03/2020 Name of Faculty: Ms. Richa Dubey Lecture No : (02) Source of information : Field Theory by Dr. Sandeep Wali, Page no. 9-1 to 9-17

OF CHEMICAL TECHNOLOGY

<u>Time-Varying Fields</u>

Time-Varying Fields

Only in a non-time-varying case can electric and magnetic fields be considered as independent of each other. In a time-varying (<u>dynamic</u>) case the two fields are interdependent. A changing magnetic field induces an electric field, and vice versa.

The Continuity Equation

Electric charges may not be created or destroyed (the principle of conservation) of charge).

Consider an arbitrary volume V bounded by surface S. A net charge Q exists within this region. If a net current *I* flows across the surface <u>out</u> of this region, the charge in the volume must <u>decrease</u> at a rate that equals the current:

20

$$I = \int_{S} \overline{J} \cdot \overline{dS} = -\frac{dQ}{dt} = -\frac{d}{dt} \int_{V} \rho_{V} dV$$
Divergence theorem
$$\int_{V} \nabla \cdot \overline{J} dV = -\int_{V} \frac{\partial \rho_{V}}{\partial t} dV$$
Partial derivative because may be a function of both time and space
This equation must hold regardless of the choice of V, therefore the integrands
must be equal:
$$\nabla \cdot \overline{J} = -\frac{\partial \rho_{V}}{\partial t} \quad (A/m^{3}) \leftarrow \text{the equation of continuity}$$
For steady currents
$$\overline{\nabla \cdot \overline{J} = 0} \leftarrow \text{Kirchhoff's current}$$
that is, steady electric currents are divergences or solenoidal.

This

that

А

Displacement Current

For magnetostatic field, we recall that

 $\nabla \times \overline{H} = \overline{J}$

Taking the divergence of this equation we have

 $\nabla \cdot \left(\nabla \times \overline{H} \right) = 0 = \nabla \cdot \overline{J}$

However the continuity equation requires that

$$\nabla \cdot \overline{J} = -\frac{\partial \rho_V}{\partial t} \neq 0$$

Thus we must modify the magnetostatic curl equation to agree with the continuity equation. Let us add a term to the former so that it becomes

$$\nabla \times \overline{H} = \overline{J} + \overline{J}_d$$

where \overline{J} is the conduction current density $\overline{J} = \sigma_E \overline{E}$, and \overline{J}_d is to be determined and defined.

Displacement Current continued

Taking the divergence we have

$$\nabla \cdot \left(\nabla \times \overline{H} \right) = 0 = \nabla \cdot \overline{J} + \nabla \cdot \overline{J}_d \quad \longrightarrow \quad \nabla \cdot \overline{J}_d = -\nabla \cdot \overline{J}$$

In order for this equation to agree with the continuity equation,

$$\nabla \cdot \overline{J}_{d} = -\nabla \cdot \overline{J} = \frac{\partial \rho_{V}}{\partial t} = \frac{\partial}{\partial t} (\nabla \cdot \overline{D}) = \nabla \cdot \frac{\partial \overline{D}}{\partial t}$$

$$\overline{J}_{d} = \frac{\partial \overline{D}}{\partial t} \quad \text{displacement current density}$$

$$\nabla \times \overline{H} = \overline{J} + \frac{\partial \overline{D}}{\partial t}$$

$$\int_{S} \nabla x \overline{H} \cdot \overline{ds} = \int_{S} \left(\overline{J} + \frac{\partial \overline{D}}{\partial t} \right) \cdot \overline{ds} \quad \rightarrow \quad \boxed{\mathbb{D}_{L} \overline{H} \times \overline{dl}} = I + \mathbb{O}_{S} \frac{\P \overline{D}}{\P t} \times \overline{ds}$$
Stokes' theorem

Time-Varying Fields

Displacement Current continued

Faraday's Law

Faraday discovered experimentally that a current was induced in a conducting loop when the magnetic flux linking the loop changed. In <u>differential</u> (or point) form this experimental fact is described by the following equation

$$\nabla x\overline{E} = -\frac{\partial \overline{B}}{\partial t}$$

Taking the surface integral of both sides over an open surface and applying <u>Stokes' theorem</u>, we obtain

Integral form
$$\longrightarrow \oint_{L} \overline{E} \cdot \overline{dI} = -\frac{\partial}{\partial t} \int_{S} \overline{B} \cdot \overline{dS} = -\frac{\partial \psi}{\partial t}$$

where ψ is the magnetic flux through the surface S.

Faraday's Law continued

Time-varying electric field is not conservative.

The effect of electromagnetic induction. When time-varying magnetic fields are present, the value of the line integral of \overline{E} from A to B may depend on the path one chooses.

Suppose that there is only one unique voltage $V_{AB} = V_A - V_B$. Then

$$V_{AB} = \oint_{L_1} \overline{E} \cdot d\overline{l} = \oint_{L_2} \overline{E} \cdot d\overline{l}$$

However,

$$\oint_{L} \overline{E} \cdot \overline{dI} = \underbrace{\int_{L_{1}} \overline{E} \cdot \overline{dI}}_{V_{AB}} - \underbrace{\int_{L_{2}} \overline{E} \cdot \overline{dI}}_{V_{AB}} = -\frac{\partial \psi}{\partial t}$$

 $V_{AB} - V_{AB} \neq 0$ $\frac{\partial \psi}{\partial t} = 0$ Thus V_{AB} can be unambiguously defined only if .(in practice, if $\lambda >>$ than the dimensions of system in question)

Faraday's Law continued

Example: An *N*-turn coil having an area *A* rotates in a uniform magnetic field *B* $\omega_M = 2\pi n$ The speed of rotation is *n* revolutions per second. Find the voltage at the coil terminals.

 $\psi = \int_{S} \overline{B} \cdot d\overline{S}$ $= BA\sin\theta$

 $\theta = 2\pi nt$ rad

<u>Rotation</u>

 $\boldsymbol{v}(t) = -\boldsymbol{N}\frac{\partial \psi}{\partial t}$

$$= -N\frac{\partial}{\partial t}\left[BA\sin(2\pi nt)\right]$$

$$= -\underbrace{2\pi nNBA}_{amplitude} \cos(2\pi nt)$$

Shaft

$$d\overline{S} = dA\overline{e}_n$$

 $(90^\circ - \theta)$

 $\cos(90^\circ - \theta) = \sin\theta$

Inductance

A circuit carrying current *I* produces a magnetic field *B* which causes a flux $\psi = \int \overline{B} \cdot d\overline{S}$ to pass through each turn of the circuit. If the medium surrounding the circuit is linear, the flux ψ is proportional to the current *I* producing it $(\psi = \langle kI \rangle)$.

T

For a <u>time-varying</u> current, according to Faraday's law, we have

 $V = N \frac{\partial \psi}{\partial t}$ (voltage induced across coil)

$$= Nk \frac{\partial I}{\partial t} = L \frac{\partial I}{\partial t}$$

$$L = Nk = \frac{N\psi}{I} = \frac{\lambda}{I}$$
, H (henry)

Magnetic field **B** produced by a circuit.

<u>Self-inductance</u> *L* is defined as the ratio of the magnetic <u>flux linkage</u> λ to the current *I*.

Inductance continued

Resistance
$$\nabla x\overline{E} = -\frac{\partial \overline{B}}{\partial t} \longrightarrow \int_{L} \overline{E} \cdot \overline{dI} = -\frac{\partial}{\partial t} \int_{S} \overline{B} \cdot d\overline{S}$$

Since $R=0$, \overline{E} has only radial component and therefore the segments 3 and 4
contribute nothing to the line integral.

$$\int_{1}^{I} \overline{E} \cdot \overline{dI} + \int_{2} \overline{E} \cdot \overline{dI} = -\mu \frac{\partial}{\partial t} \int_{S} \overline{H} \cdot d\overline{S} = +\mu \frac{\partial}{\partial t} \int_{\rho} (H_{\phi} \overline{e}_{\phi}) \cdot (hd\rho \overline{e}_{\phi})$$

$$= \frac{\mu h}{2\pi} \frac{\partial I}{\partial t} \int_{a}^{b} \frac{1}{\rho} d\rho = \frac{\mu h}{2\pi} \ln\left(\frac{b}{a}\right) \frac{\partial I}{\partial t}$$

$$L \frac{dI(z)}{dt} = -\frac{v(z+h) - v(z)}{h}$$

$$L = \frac{\mu}{2\pi} \ln\left(\frac{b}{a}\right) H/m$$
(from previous work)

- Assignment:
- 1) write a short note on continuity equation of Current
- 2) Derive the relation between I and J?
- Write these questions in the workbook given to you and Submit it by 31/03/2020
- For any Query pl Contact: Ms Richa Dubey (9998037615) <u>richa.dubey@srict.in</u>